Skip to main content

Advertisement

Log in

Algal biofilms on tree bark to monitor airborne pollutants

  • Full Paper
  • Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Algae are used in biomonitoring systems to detect water or soil pollution. So it is conceivable to establish a biomonitoring system for the detection of airborne pollutants (ozone and particulate matter (PM-10)) in urban habitats by algae. Autotrophic biofilms are widely present, cover nearly every exposed surface, especially tree bark and consist of a large variety of species of algae, cyanobacteria and fungi. To explore the diversity of green algae at different air pollution monitoring sites we choose trees with different structures of bark at three locations in and near Leipzig. We compared the measured levels of air pollution with the algal species and communities present. The sites differed in the quality and amount of airborne pollutants, among which we concentrated on ozone and particulate matter (PM-10). The collection sites were Leipzig-Centre, Leipzig-West and a forest area east of Leipzig (Collmberg). Autotrophic biofilms were collected, algae cultures established and taxonomic and morphological studies were carried out with light microscopy. Green algae were present on tree bark at all sites and forty-eight different algal species and cyanobacteria were isolated. Preliminary results suggested a correlation between pollutants and occurrence of some specific algal species and the specific algal assemblages at a given site. It is concluded that this could provide the basis for a biomonitoring system involving aero-terrestrial algae for the detection of airborne pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamo P., Crisafulli P., Giordano S., Minganti V., Modenesi P., Monaci F., Pittao E., Tretiach M. & Bargagli R. 2007. Lichen and moss bags as monitoring devices in urban areas. Part II: Trace element content in living and dead biomonitors and comparison with synthetic materials. Environm. Pollution 146: 392–399.

    Article  CAS  Google Scholar 

  • Alga growth inhibition test, OECD 201

  • Altenburger R., Walter H. & Grote M. 2004. What contributes to the combined effect of a complex mixture? Environ. Sci. & Technol. 38(23): 6353–6362.

    Article  CAS  Google Scholar 

  • Andreeva V.M. 1973. Novye vidy Chlorella Beijer. (New species of the Chlorella Beijer.). Bot. Z., Leningrad, 58: 1735–1741.

    Google Scholar 

  • Andreeva V.M. 1998. Terrestrial and aerophytic green algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Nauka, St. Petersburg, 352 pp.

    Google Scholar 

  • Bischoff H.W. & Bold H.C. 1963. Some soil algae from Enchanted Rock and related algal species. Phycol. Stud. 4, Univ. Texas Pub. 6318: 1–95.

    Google Scholar 

  • Blett T., Geiser L. & Porter E. 2003. Air pollution-related lichen monitoring in national parks, forests and refuges: guideline for studies intended for regulatory and management purposes, U.S. Department of the Interior & U.S. Department of Agriculture, 26 pp.

  • Brand F. 1925. Analyse der aerophilen Grünalgenanflüge, insbesondere der proto-pleurococcoiden Formen. Arch. Protistenk. 52: 265–354.

    Google Scholar 

  • Edlich F. 1936. Einwirkung von Temperatur und Wasser auf aerophile Algen. Arch. Mikrobiol. 7: 62–109.

    Article  Google Scholar 

  • Ettl H. 1983. Chlorophyta I — Phytomonadina. In: Ettl H., Gerloff J., Heyning H. & Mollenhauer D. (eds), Süßwasserflora von Mitteleuropa 9, G. Fischer Verlag, Jena, 807 pp.

    Google Scholar 

  • Ettl H. & Gärtner G. 1995. Syllabus der Boden-, Luft-und Flechtenalgen. Gustav Fischer Verlag, Stuttgart — Jena — New York, 721 pp.

    Google Scholar 

  • Gärtner G. & Ingolić E. 1989. Ein Beitrag zur Kenntnis von Apatococcus lobatus (Chlorophyta, Chaetophorales, Leptosiroideae). Pl. Syst. Evol. 164: 133–143.

    Article  Google Scholar 

  • Geitler L. 1942. Morphologie, Entwicklungsgeschichte und Systematik neuer bemerkenswerter aerophytischer Algen aus Wien. Flora 136: 1–29.

    Google Scholar 

  • Görs S., Schumann R., Häubner N. & Karsten U. 2007. Fungal and algal biomass on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. Int. Biodeterioration & Biodegradation 60: 50–59

    Article  CAS  Google Scholar 

  • Gorbushina A.A. 2007: Life on the rocks, Environmental Microbiology 9(7): 1613–1631

    Article  PubMed  CAS  Google Scholar 

  • Grote M., Schüürmann G. & Altenburger R. 2005. Modeling photoinduced algal toxicity of polycyclic aromatic hydrocarbons. Environ. Sci. & Technol. 39(11): 4141–4149.

    Article  CAS  Google Scholar 

  • Handa S., Nakano T. & Takeshita S. 1991. Some corticous algae from Shibetu, Hokkaido, Northern Japan. J. Jap. Bot. 66(4): 211–223.

    Google Scholar 

  • Heath R. L. 1994. Possible mechanisms for the inhibition of photosynthesis by ozone. Photosynth. Res 39: 439–451.

    Article  CAS  Google Scholar 

  • Hilge C., Petersen K. & Krumbein W.E. 1998. Rolle des bei UV-Strahlung freiwerdenden Ozons bei der Schädigung von Mikroorganismen. Z. Kunsttechnol. & Konservierung, pp. 162–173.

  • Höhn B. 2002. Bodennahes Ozon — Entstehung — Wirkung — Maßnahmen, Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen.

  • DIN 38412 — Teil 33 1991. Bestimmung der nicht giftigen Wirkung von Abwasser gegenüber Grünalgen (Scenedesmus-Chlorophyll-Fluoreszenz-Test) über Verdünnungsstufen.

  • Komárek J. & Fott B. 1983. Das Phytoplankton des Süßwassers (7. Teil — 1. Hälfte), In: Huber-Pestalozzi, G. (ed.) Die Binnengewässer Band XVI, Schweizerbart, Stuttgart, 1044 pp.

    Google Scholar 

  • Lokhorst G.M. & Vroman M. 1974. Taxonomic studies on the genus Ulothrix (Ulotrichaes, Chlorophyceae) II. Acta Bot. Neerl. 23: 369–398.

    Google Scholar 

  • Loreto F. & Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular Membranes. Plant Physiol. 127: 1781–1787.

    Article  PubMed  CAS  Google Scholar 

  • Pauls K.P. & Thompson J.E. 1980. In vitro simulation of senescence-related membrane damage by ozone-induced lipid peroxidation. Nature 283: 504–506.

    Article  PubMed  CAS  Google Scholar 

  • Reisser W. & Houben P. 2001. Different strategies of aeroter-restrical algae in reacting to increased levels of UV-B and ozone. Nova Hedwigia, Beih. 123: 291–296.

    Google Scholar 

  • Rindy F. & Guiry M.D. 2004. Composition and spatial variability of terrestrial algal assemblages occurring at the base of urban walls in Europe. Phycologia 43(3): 225–235.

    Article  Google Scholar 

  • Schmidt G. 1927. Zur Ökologie der Luftalgen, Ber. dtsch. bot. Ges. 45: 518–533.

    Google Scholar 

  • Steiner M. & Schulze-Horn D. 1955. Über die Verbreitung und Expositionsabhängigkeit der Rindenepiphyten im Stadtgebiet von Bonn. Decheniana 108/1: 1–16.

    Google Scholar 

  • Stroh K. 2004. Bodennahes Ozon. Bayrisches Landesamt für Umweltschutz, 7 pp.

  • Yair A. 2001. Effects of Biological Soil Crusts on Water Redistribution in the Negev Desert, Israel: a Case Study in Longitudinal Dunes. Ecol. Stud. 150: 303–314. In: Belnap, J. & Lange, O. L. (eds), Biological soil crusts: structure, function and management. Springer — Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Yamamoto Y., Miura Y., Higuchi M., Kinoshita Y. & Yoshimura I. 1993. Using lichen tissue cultures in modern biology. The Bryologist 96/3: 384–393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Freystein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freystein, K., Salisch, M. & Reisser, W. Algal biofilms on tree bark to monitor airborne pollutants. Biologia 63, 866–872 (2008). https://doi.org/10.2478/s11756-008-0114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0114-z

Key words

Navigation