Skip to main content
Log in

Diel microdistribution of physical and chemical parameters within the dense Chara bed and their impact on zooplankton

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Research on the diurnal distribution of physical and chemical parameters within a single macrophyte bed was carried out on the shallow Wielkowiejskie Lake (Poland). A non-parametric statistical analysis was used to compare the water quality features in different parts of a Chara hispida habitat including the middle, both edge (vertical and horizontal) parts of a macrophyte plant, and the open water next to-and above the stonewort stand.

The obtained results showed a differentiation in the physical-chemical parameters of the environmental conditions within the Chara hispida stand. The greatest variability was found for dissolved oxygen. Its lowest concentrations were noted in the central part of the macrophyte stand, irrespective of the sampling time.

The zooplankton communities within the examined Chara bed were strongly influenced by the concentration of dissolved oxygen. It was also found that two main components of zooplankton communities (rotifers and cladocerans) had a similar trend in their spatial and diurnal distribution within the stonewort stand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albay M. & Akcaalan R. 2003. Comparative study of periphyton colonization on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiol. 506(1): 531–540.

    Article  Google Scholar 

  • Basu B.K., Kalff J. & Pinel-Alloul B. 2000. The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St Lawrence River. Freshwat. Biol. 45: 373–382.

    Article  Google Scholar 

  • Blindow I. 1987. The composition and density of epiphyton on several species of submerged macrophytes — the neutral substrate hypothesis tested. Aquat. Bot. 29: 157–168.

    Article  Google Scholar 

  • Burks R.L., Lodge D.M., Jeppesen E. & Lauridsen T.L. 2002. Diel horizontal migration of zooplankton costs and benefits of inhabiting the littoral. Freshwat. Biol. 47: 343–365.

    Article  Google Scholar 

  • Burns C.W. & Dodds A. 1999. Food limitation, predation and allelopathy in a population of Daphnia carinata. Hydrobiol. 400: 41–53.

    Article  Google Scholar 

  • Canfield D.E. Jr., Schireman J.V., Colle D.E., Haller W.T., Watkins C.E. II, & Maceina M.J. 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. Aquat. Sci. 41: 497–501.

    CAS  Google Scholar 

  • Carpenter S.R. & Lodge D.M. 1986. Effects of submerged macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370.

    Article  Google Scholar 

  • Chick J.H. & McIvor C.C. 1994. Patterns in the abundance and composition of fishes among beds of different macrophytes: viewing a littoral zone as a landscape. Can. J. Fish. Aquat. Sci. 51: 2873–2882.

    Google Scholar 

  • Cyr H. & Downing J.A. 1988. The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshwat. Biol. 20: 365–337.

    Article  Google Scholar 

  • Dorgelo J. & Heycoop M. 1985. Avoidance of macrophytes by Daphnia longispina. Verh. Internat. Verein. Limnol. 22: 3369–3372.

    Google Scholar 

  • Dvorak J. & Best E.P.H. 1982. Macro-invertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. Hydrobiol. 95: 115–126.

    Article  Google Scholar 

  • Frodge J.D., Thomas G.L. & Pauley G.B. 1990. Effects of canopy formation on floating and submerged aquatic macrophytes on the water quality of two shallow Pacific NW lakes. Aquat. Bot. 38: 231–248.

    Article  Google Scholar 

  • Gilbert J.J. 1989. Competitive interactions between the rotifer Synchaeta oblonga and the cladoceran Scapholeberis kingi Sars. Hydrobiol. 186/187: 75–80.

    Article  Google Scholar 

  • Gopal B. & Goel U. 1993. Competition and allelopathy in aquatic plant communities. Bot. Rev. 59: 155–219.

    Google Scholar 

  • Gross E.M., Erhard D. & Ivanyi E. 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina spp. intermedia (Wolfgang) Casper. Hydrobiol. 506–509: 583–589.

    Article  Google Scholar 

  • Hasler A.D. & Jones E. 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 359–364.

    Article  Google Scholar 

  • Irvine K., Balls H. & Moss B. 1990. The entomostracan and rotifer communities associated with submerged plants in the Norfolk Broadland — Effect of plant biomass and species composition. Int. Rev. ges. Hydrobiol. 75: 121–141.

    Article  Google Scholar 

  • Jańczak J., Brodzińska B., Kowalik A. & Sziwa R. 1996. Atlas of Lakes of Poland. T. I. Bogucki, Wydawnictwo Naukowe, Poznań.

    Google Scholar 

  • Kleiven S. & Szczepańska W. 1988. The effects of extracts from Chara tomentosa and two other aquatic macrophytes on seed germination. Aquatic Botany 32: 193–198.

    Article  Google Scholar 

  • Klimaszyk P., Kraska M., Piotrowicz R. & Joniak, T. 2003. Functioning of small water bodies of the Wielkopolski National Park (western Poland). Verh. int. Ver. Limnol. 28,IV: 1735–1738.

    Google Scholar 

  • Kuczyńska-Kippen N. 2006. The diurnal distribution of rotifers (Rotifera) within a single Chara hispida bed. J. Freshw. Ecol. 21,IV: 553–559.

    Google Scholar 

  • Kuczyńska-Kippen N., Messyasz B. & Nagengast B. 2005. Comparative study of periphyton communities on rush complex and Chara tomentosa in three shallow lakes of Wielkopolska area, Poland. Biologia 60: 349–355.

    Google Scholar 

  • Kuczyńska-Kippen N. & Nagengast B. 2003. The impact of the spatial structure of hydromacrophytes on the similarity of rotifera communities (Budzyńskie Lake, Poland). Hydrobiol. 506(1): 333–338.

    Article  Google Scholar 

  • Lampert W. & Sommer U. 2001. Ekologia wód sŕódlądowych. Wydawnictwo Naukowe PWN, 392 pp.

  • Lillie R.A. & Budd J. 1992. Habitat architecture of Myriophyllum spicatum L. As an index to habitat quality for fish and macroinvertebrates. J. Freshwat. Ecol. 7: 113–125.

    Google Scholar 

  • Lodge D.M. 1985. Macrophyte-gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshwat. Biol. 15: 695–708.

    Article  Google Scholar 

  • Mastyński J., Andrzejewski W. & Czarnecki M. 1998. Ichtyofauna of the Wielkopolski National Park. In: Burchardt L. (ed.), Program for Protection of Water Ecosystems of Wielkopolski National Park. Wielkopolski National Park Directory, Poznań-Jeziory.

  • Messyasz B. 2001. The characteristics of the phycoflora structure of lakes and ponds in the Wielkopolski National Park. In: Burchard L. (ed.), Water Ecosystems of Wielkopolski National Park. Wydawnictwo Naukowe UAM, Poznań.

    Google Scholar 

  • Nakai S., Inoue Y., Hosomi M. & Murakami A. 1999. Growth inhibition of blue-green algae by allelopathic effect of macrophytes. Wat. Sci Tech. 39(8): 47–53.

    Article  Google Scholar 

  • Ondok J.P. 1978. Radiation climate in fish pond littoral plant communities. In: Dykyjová D. & Květ J. (eds), Pond littoral ecosystems — Structure and functioning. Ecol. Studies 28: 113–125.

  • Pip E. & Stewart J.M. 1976. The dynamics of two aquatic plantsnail associations. Can. J. Zool. 54: 1192–1205.

    Article  Google Scholar 

  • Sand Jensen K. & Borum J. 1984. Epiphyte shading and its effect of photosynthesis and diel metabolism of Lobelia dortmanna during the spring bloom in a Danish lake. Aquat. Bot. 20: 109–120.

    Article  CAS  Google Scholar 

  • Scheffer M. 2001. Ecology of Shallow Lakes. Kluwer Academic Publishers, Dordrecht, Boston, London, 357 pp.

    Google Scholar 

  • Sheldon S.P. 1987. The effects of herbivorous snails on submerged macrophytes communities in Minnesota lakes. Ecology 68: 1920–1931.

    Article  Google Scholar 

  • Standard Methods for Examination of Water and Wastwater, 1992. American Public Health Association, New York, 1137 pp.

  • Strickland J.D. & Parsons T.R. 1972. A practical Handbook of Seawater Analysis (2nd Ed). Bull. Fish. Res. Bd Can., 167pp.

  • Wickham S.A. & Gilbert J.J. 1990. Relative vulnerability of natural rotifer and ciliate communities to cladocerans: laboratory and field experiments. Freshwat. Biol. 26: 77–86.

    Article  Google Scholar 

  • Wium-Andersen S., Anthoni U., Christophersen C, & Hoen G. 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuczyńska-Kippen, N., Klimaszyk, P. Diel microdistribution of physical and chemical parameters within the dense Chara bed and their impact on zooplankton. Biologia 62, 432–437 (2007). https://doi.org/10.2478/s11756-007-0080-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-007-0080-x

Key words

Navigation