Skip to main content

Advertisement

Log in

Chemical composition of modern and pre-acidification sediments in the Tatra Mountain lakes

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Concentrations of major nutrients (C, N, P) and acid soluble metals (Ca, Mg, K, Al, Fe, Mn, Pb, and Zn) were determined in modern (0–1 cm) and pre-acidification (5–10 cm) sediment layers collected from 37 alpine and 3 forest lakes in the Tatra Mountains (Slovakia, Poland) in 1996–1998. Sediment composition reflected catchment characteristics and productivity of lakes. In the sediments of alpine lakes, C and N concentrations decreased and Mg increased with a decreasing proportion of vegetation and soil in the catchment. Decreasing Ca:Mg ratios in sediments along the vegetation gradient was inverse to that in water, and could be associated with different ratios of cations in water leachate from catchments and in solids which enter the lake due to soil erosion. Phosphorus concentrations increased with the proportion of moraine areas, with till soils rich in P. Concentrations of C, N, P, and Ca in sediments positively correlated to their concentrations in water. Sediment concentrations of Al and Al:Ca ratios increased with decreasing sediment and water pH. A negative correlation between water pH and concentrations of organic C in water and sediments indicated the important impact of organic acids on the acid status of the lakes exposed to higher terrestrial export of organic matter. Compared to the pre-acidification period, the modern sediments had significantly higher Fe, Mn, Zn, Pb, and K, but lower Mg concentrations. The Zn and Pb enrichment was more evident in oligotrophic alpine lakes than in more productive forest lakes and was independent of lake water or sediment pH. Fe and Mn concentrations in the modern sediments were higher than in ambient soils and bedrock, while those in pre-acidification sediments were similar to contemporary soils and to the rock layer. The enrichment of the modern sediments with Fe and Mn thus probably resulted from both their redox recycling and ecosystem acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleby, P.G. & Piliposian, G.T. 2006. Radiometric dating of sediment records from mountain lakes in the Tatra Mountains. Biologia, Bratislava 61,Suppl. 18: S51–S64.

    CAS  Google Scholar 

  • Boyle, J.F. 2001. Inorganic geochemical methods in palaeolimnology, pp. 83–141. In: Last, W.M. & Smol, J.P. (eds) Tracking environmental change using lake sediments, Volume 2: Physical and geochemical methods, Kluwer, Dordrecht.

    Google Scholar 

  • Brenner, M. & Binford, M.W. 1988. Relationships between concentrations of sedimentary variables and trophic state of Florida lakes. Can. J. Fish. Aquat. Sci. 45: 294–300.

    Article  Google Scholar 

  • Callender, E. 2004. Heavy metals in the environment — Historical trends, pp. 67–105. In: Lollar, B.S. (ed.) Treatise on geochemistry, Vol. 9, Environmental geochemistry, Elsevier, Oxford.

    Google Scholar 

  • Engström, D.R. & Wright Jr., H.E. 1984. Chemical stratigraphy of lake sediments as a record of environmental change, pp. 11–68. In: Haworth, E.Y. & Lund, J.G.W. (eds) Lake sediments and environmental history, Leicester University Press, Leicester.

    Google Scholar 

  • Fott, J., Pražáková, M., Stuchlík, E. & Stuchlíková, Z. 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274: 37–47.

    Article  CAS  Google Scholar 

  • Gorek, A. & Kahan, Š. 1973. Prehl’ad geologického vývoja a stavby Vysokých Tater [Review of the geological development and structure of the High Tatra Mountains]. Zborník TANAP 15: 5–88.

    Google Scholar 

  • Gregor, V. & Pacl, J. 2005. Hydrológia tatranských jazier [Hydrology of the Tatra Mountain lakes]. Acta Hydrologica Slovaca 6: 161–187.

    Google Scholar 

  • Hecky, R.E., Campbell, P. & Hendzel, L.L. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724.

    Article  CAS  Google Scholar 

  • Kamenik, C., Schmidt, R., Kum, G. & Psenner, R. 2001. The influence of catchment characteristics on the water chemistry of mountain lakes. Arct. Antarct. Alp. Res. 33: 404–409.

    Article  Google Scholar 

  • Kopáček, J., Borovec, J., Hejzlar, J. & Porcal, P. 2001a. Parallel spectrophotometric determinations of iron, aluminum, and phosphorus in soil and sediment extracts. Comm. Soil Sci. Plant Anal. 32: 1431–1443.

    Article  Google Scholar 

  • Kopáček, J., Hardekopf, D., Majer, M., Pšenáková, P., Stuchlík, E. & Veselý, J. 2004a. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland. J. Limnol. 63: 143–156.

    Google Scholar 

  • Kopáček, J. & Hejzlar, J. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53: 173–183.

    Google Scholar 

  • Kopáček, J., Kaňa, J. & Šantrůčková, H. 2006a. Pools and composition of soils in the alpine zone of the Tatra Mountains. Biologia, Bratislava 61,Suppl. 18: S35–S49.

    Google Scholar 

  • Kopáček, J., Kaňa, J., Šantrůková, H., Picek, T. & Stuchlík, E. 2004b. Chemical and biochemical characteristics of alpine soils in the Tatra Mountains and their correlation with lake water quality. Water Air Soil Poll. 153: 307–327.

    Article  Google Scholar 

  • Kopáček, J. & Procházková, L. 1993. Semi-micro determination of ammonia in water by the rubazoic acid method. Int. J. Environ. Anal. Chem. 53: 243–248.

    Google Scholar 

  • Kopáček, J., Stuchlík, E. & Hardekopf, D. 2006b. Chemical composition of the Tatra Mountain lakes: Recovery from acidification. Biologia, Bratislava 61,Suppl. 18: S21–S33.

    Google Scholar 

  • Kopáček, J., Stuchlík, E., Straškrabová V. & Pšenáková, P. 2000. Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshwater Biol. 43: 369–383.

    Article  Google Scholar 

  • Kopáček, J., Stuchlík, E., Veselý, J., Schaumburg, J., Anderson, I.C., Fott, J., Hejzlar, J. & Vrba, J. 2002. Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water Air Soil Poll., Focus 2: 91–114.

    Article  Google Scholar 

  • Kopáček, J., Veselý, J. & Stuchlík, E. 2001b. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850–2000). Hydrol. Earth Syst. Sci. 5: 391–405.

    Article  Google Scholar 

  • Kubovčík, V. & Bitušík, P. 2006. Subfossil chironomids (Diptera, Chironomidae) in three Tatra Mountain lakes (Slovakia) on an acidification gradient. Biologia, Bratislava 61,Suppl. 18: S213–S220.

    Google Scholar 

  • Mackereth, F.J.H. 1966. Some chemical observations on postglacial lake sediments. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 250: 165–213.

    CAS  Google Scholar 

  • Meyers, P.A. & Teranes, J.L. 2001. Sediment organic matter, pp. 239–269. In: Last, W.M. & Smol, J.P. (eds) Tracking environmental change using lake sediments, Volume 2: Physical and geochemical methods, Kluwer, Dordrecht.

    Google Scholar 

  • McKee, J.D., Wilson, T.P., Long, D.T. & Owen, R.M. 1989. Geochemical partitioning of Pb, Zn, Cu, Fe, and Mn across the sediment-water interface in large lakes. J. Great Lakes Res. 15: 46–58.

    CAS  Google Scholar 

  • Müller, B., Lotter, A.F., Sturm, M. & Ammann, A. 1998. Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe. Aquat. Sci. 60: 316–337.

    Article  Google Scholar 

  • Nemčok, J., Bezák, V., Janák, M., Kahan, Š, Ryja, W., Kohút, M., Lehotský, I., Wieczorek, J., Zelman, J., Mello, J., Halouzka, R., Raczkowski, W. & Reichwalder, P. 1993. Vysvetlivky ku geologickej mape Tatier [Explanation of the Geological map of the Tatra Mountains]. Geologický ústav Dionýza Štúra, Bratislava, 135 pp.

    Google Scholar 

  • Pasternak, K. 1965. The chemical composition of sediments in some Tatra lakes, pp. 59–73. In: Strmach, K. et al. (eds) Limnological investigations in the Tatra Mountains and Dunajec River Basin, Komitet Zagospodarzovania Ziem Górskych, Zeszyt No. 11, Polish Academy of Sciences, Kraków.

    Google Scholar 

  • Pelíšek, J. 1973a. Vertical soil zonality in the Carpathians of Czechoslovakia. Geoderma 9: 193–211.

    Article  Google Scholar 

  • Pelíšek, J. 1973b. Pôdne pomery Tatranského národneho parku [Soil conditions of the Tatra National Park]. Zborník TANAP 15: 145–180.

    Google Scholar 

  • Procházková, L. 1960. Einfluss der Nitrate und Nitrite auf die Bestimmung des organischen Stickstoffs und Ammoniums im Wasser. Arch. Hydrobiol. 56: 179–185.

    Google Scholar 

  • Psenner, R. 1998. Alkalinity generation in a soft-water lake: Watershed and in-lake processes. Limnol. Oceanogr. 33: 1463–1475.

    Article  Google Scholar 

  • Sacherová, V., Kršková, R., Stuchlík, E., Hořická, Z., Hudec, I. & Fott, J. 2006. Long-term change in the littoral Cladocera in the Tatra Mountain lakes through a major acidification event. Biologia, Bratislava 61,Suppl. 18: S109–S119.

    Google Scholar 

  • Schiff, S.L. & Anderson, R.F. 1986. Alkalinity production in epilimnetic sediments: Acidic and non-acidic lakes. Water Air Soil Poll. 31: 941–948.

    Article  CAS  Google Scholar 

  • Stuchlí, E., Appleby, P., Bitušík, P., Curtis, C., Fott, J., Kopáček, J., Pražáková, M., Rose, N., Strunecký, O. & Wright, R.F. 2002. Reconstruction of long-term changes in lake water chemistry, zooplankton and benthos of a small, acidified high-mountain lake: MAGIC modelling and palaeolimnological analysis. Water Air Soil Poll., Focus 2: 127–138.

    Article  Google Scholar 

  • Stuchlík, E., Kopáček, J., Fott, J. & Hořická, Z. 2006. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia, Bratislava, 61,Suppl. 18: S11–S20.

    Google Scholar 

  • Szaflarski, J. 1936. Morfometria jezior tatrzańskich; Cz. I. Jeziora Tatr Polskich [Morphology of the Tatra Mountain lakes; Part I. Lakes of the Polish Tatra Mountains]. Wiadomości Służby Geograficznej, Warszawa 1: 1–37.

    Google Scholar 

  • Šporka, F., Štefková, E., Bitušík, P., Thompson, A.R., Agustí-Panareda, A., Appleby, P.G., Grytnes, J.A., Kamenik, C., Krno, I., Lami, A., Rose., N. & Shilland, N.E. 2002. The paleolimnological analysis of sediments from high mountain lake Nižné Terianske pleso in the High Tatras (Slovakia). J. Paleolimnol. 28: 95–109.

    Article  Google Scholar 

  • Štefková, E. 2006. Epilithic diatoms of mountain lakes of the Tatra Mountains, (Slovakia). Biologia, Bratislava 61,Suppl. 18: S101–S108.

    Google Scholar 

  • Talbot, M.R. 2001. Nitrogen isotopes in palaeolimnology, pp. 401–439. In: Last, W.M. & Smol, J.P. (eds) Tracking environmental change using lake sediments, Volume 2, Physical and geochemical methods, Kluwer, Dordrecht.

    Google Scholar 

  • Veselý, J. 1994. Effects of acidification on trace metal transport in fresh waters, pp. 141–151. In: Steinberg, C.E.W. & Wright, R.F. (eds) Acidification of freshwaters, Willey, Chichester.

    Google Scholar 

  • Vološčuk, I. (ed.) 1994. Tatranský národný park [Tatra National Park]. Gradus, Slovakia, 551 pp.

    Google Scholar 

  • Wathne, B.M., Patrick, S. & Cameron, N. 1997. AL:PE 2 — Acidification of mountain lakes: Palaeolimnology and ecology. Part 2 — Remote mountain lakes as indicators of air pollution and climate change, Report 3538–97, NIVA, Oslo, 525 pp.

    Google Scholar 

  • Wetzel, R.G. 2001. Limnology. 3rd ed., Academic Press, New York, 1006 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopáček, J., Borovec, J., Hejzlar, J. et al. Chemical composition of modern and pre-acidification sediments in the Tatra Mountain lakes. Biologia 61 (Suppl 18), S65–S76 (2006). https://doi.org/10.2478/s11756-006-0120-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-006-0120-y

Key words

Navigation