Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 4, 2014

Need for database extension for reliable identification of bacteria from extreme environments using MALDI TOF mass spectrometry

  • Anna Kopcakova EMAIL logo , Zuzana Stramova , Simona Kvasnova , Andrej Godany , Zuzana Perhacova and Peter Pristas
From the journal Chemical Papers

Abstract

The ability of MALDI TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) to identify cultivable microflora from two waste disposal sites from non-ferrous metal industry was analysed. Despite the harsh conditions (extreme pH values and heavy metal content in red mud disposal site from aluminium production or high heavy metal content in nickel sludge), relatively high numbers of bacteria were recovered. In both environments, the bacterial community was dominated by Gram-positive bacteria, especially by actinobacteria. High-quality MALDI TOF mass spectra were obtained but most of the bacteria isolates could be not identified using MALDI Biotyper software. The overall identification rate was lower than 20 %; in two of the environments tested identification rates were lower than 10 %. As a dominant bacterial species, Microbacterium spp. in drainage water from an aluminium red mud disposal site near Žiar nad Hronom, Bacillus spp. in red mud samples from the same site, and Arthrobacter spp. from nickel smelter sludge near Sereï were identified by a combination of the Biolog system and 16S rRNA sequence analysis. As the primary focus of the MALDI TOF MS-based methodology is directed towards medically important bacteria, reference database spectra expansion and refinement are needed to improve the ability of MALDI TOF MS to identify environmental bacteria, especially those from extreme environments.

[1] Anhalt, J. P., & Fenselau, C. (1975). Identification of bacteria using mass spectrometry. Analytical Chemistry, 47, 219–225. DOI: 10.1021/ac60352a007. http://dx.doi.org/10.1021/ac60352a00710.1021/ac60352a007Search in Google Scholar

[2] Bizzini, A., Jaton, K., Romo, D., Bille, J., Prod’hom, G., & Greub, G. (2011). Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-toidentify bacterial strains. Journal of Clinical Microbiology, 49, 693–696. DOI: 10.1128/jcm.01463-10. http://dx.doi.org/10.1128/JCM.01463-1010.1128/JCM.01463-10Search in Google Scholar PubMed PubMed Central

[3] Borsodi, A. K., Micsinai, A., Rusznyák, A., Vladár, P., Kovács, G., Tóth, E. M., & Márialigeti, K. (2005). Diversity of alkaliphilic and alkalitolerant bacteria cultivated from decomposing reed rhizomes in a Hungarian soda lake. Microbial Ecology, 50, 9-18. DOI: 10.1007/s00248-004-0063-1. 10.1007/s00248-004-0063-1Search in Google Scholar PubMed

[4] Christensen, J. J., Dargis, R., Hammer, M., Justesen, U. S., Nielsen, X. C., Kemp, M., & the Danish MALDI-TOF MS Study Group (2012). Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of Grampositive, catalase-negative cocci not belonging to the Streptococcus or Enterococcus genus and benefits of database extension. Journal of Clinical Microbiology, 50, 1787–1791. DOI: 10.1128/jcm.06339-11. http://dx.doi.org/10.1128/JCM.06339-1110.1128/JCM.06339-11Search in Google Scholar PubMed PubMed Central

[5] Clarridge, J. E., III (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17, 840–862. DOI: 10.1128/cmr.17.4.840-862.2004. http://dx.doi.org/10.1128/CMR.17.4.840-862.200410.1128/CMR.17.4.840-862.2004Search in Google Scholar PubMed PubMed Central

[6] Cobo, F. (2013). Application of MALDI-TOF mass spectrometry in clinical virology: A review. The Open Virology Journal, 7, 84–90. DOI: 10.2174/1874357920130927003. http://dx.doi.org/10.2174/187435792013092700310.2174/1874357920130927003Search in Google Scholar PubMed PubMed Central

[7] De Bruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P., De Baets, B., & Vandamme, P. (2011). Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Systematic and Applied Microbiology, 34, 20–29. DOI: 10.1016/j.syapm.2010.11.003. http://dx.doi.org/10.1016/j.syapm.2010.11.00310.1016/j.syapm.2010.11.003Search in Google Scholar PubMed

[8] Edouard, S., Couderc, C., Raoult, D., & Fournier, P. E. (2012). Mass spectrometric identification of Propionibacterium isolates requires database enrichment. Advances in Microbiology, 2, 497–504. DOI: 10.4236/aim.2012.24063. http://dx.doi.org/10.4236/aim.2012.2406310.4236/aim.2012.24063Search in Google Scholar

[9] Eigner, U., Holfelder, M., Oberdorfer, K., Betz-Wild, U., Bertsch, D., & Fahr, A. M. (2009). Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clinical Laboratory, 55, 289–296. Search in Google Scholar

[10] Ellis, R. J., Morgan, P., Weightman, A. J., & Fry, J. C. (2003). Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Applied and Environmental Microbiology, 69, 3223–3230. DOI: 10.1128/aem.69.6.3223-3230.2003. http://dx.doi.org/10.1128/AEM.69.6.3223-3230.200310.1128/AEM.69.6.3223-3230.2003Search in Google Scholar PubMed PubMed Central

[11] Ferreira, L., Sánchez-Juanes, F., Muñoz-Bellido, J. L., & González-Buitrago, J. M. (2011). Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-offlight mass spectrometry: intact cell vs. extraction method. Clinical Microbiology and Infection, 17, 1007–1012. DOI: 10.1111/j.1469-0691.2010.03339.x. http://dx.doi.org/10.1111/j.1469-0691.2010.03339.x10.1111/j.1469-0691.2010.03339.xSearch in Google Scholar PubMed

[12] Hamdy, M. K., & Williams, F. S. (2001). Bacterial amelioration of bauxite residue waste of industrial alumina plants. Journal of Industrial Microbiology and Biotechnology, 27, 228–233. DOI: 10.1038/sj.jim.7000181. http://dx.doi.org/10.1038/sj.jim.700018110.1038/sj.jim.7000181Search in Google Scholar

[13] Holland, R. D., Wilkes, J. G., Rafii, F., Sutherland, J. B., Persons, C. C., Voorhees, K. J., & Lay, J. O., Jr. (1996). Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 10, 1227–1232. DOI: 10.1002/(SICI)1097-0231(19960731)10:10<1227::AIDRCM659>3.0.CO;2-6. http://dx.doi.org/10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-610.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6Search in Google Scholar

[14] Kaprelyants, A. S., & Kell, D. B. (1993). Dormancy in stationary-phase cultures of Micrococcus luteus: Flow cytometric analysis of starvation and resuscitation. Applied and Environmental Microbiology, 59, 3187–3196. 10.1128/aem.59.10.3187-3196.1993Search in Google Scholar

[15] Keys, C. J., Dare, D. J., Sutton, H., Wells, G., Lunt, M., McKenna, T., McDowall, M., & Shah, H. N. (2004). Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases. Infection, Genetics and Evolution, 4, 221–242. DOI: 10.1016/j.meegid.2004.02.004. http://dx.doi.org/10.1016/j.meegid.2004.02.00410.1016/j.meegid.2004.02.004Search in Google Scholar

[16] Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716–721. DOI: 10.1099/ijs.0.038075-0. http://dx.doi.org/10.1099/ijs.0.038075-010.1099/ijs.0.038075-0Search in Google Scholar

[17] Koubek, J., Uhlik, O., Jecna, K., Junkova, P., Vrkoslavova, J., Lipov, J., Kurzawova, V., Macek, T., & Mackova, M. (2012). Whole-cell MALDI-TOF: Rapid screening method in environmental microbiology. International Biodeterioration & Biodegradation, 69, 82–86. DOI: 10.1016/j.ibiod.2011.12.007. http://dx.doi.org/10.1016/j.ibiod.2011.12.00710.1016/j.ibiod.2011.12.007Search in Google Scholar

[18] Krader, P., & Emerson, D. (2004). Identification of archaea and some extremophilic bacteria using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Extremophiles, 8, 259–268. DOI: 10.1007/s00792-004-0382-7. http://dx.doi.org/10.1007/s00792-004-0382-710.1007/s00792-004-0382-7Search in Google Scholar

[19] Logan, N. A. (2012). Bacillus and relatives in foodborne illness. Journal of Applied Microbiology, 112, 417–429. DOI: 10.1111/j.1365-2672.2011.05204.x. http://dx.doi.org/10.1111/j.1365-2672.2011.05204.x10.1111/j.1365-2672.2011.05204.xSearch in Google Scholar

[20] Margesin, R., Płaza, G. A., & Kasenbacher, S. (2011). Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere, 82, 1583–1588. DOI: 10.1016/j.chemosphere.2010.11.056. http://dx.doi.org/10.1016/j.chemosphere.2010.11.05610.1016/j.chemosphere.2010.11.056Search in Google Scholar

[21] Martiny, D., Busson, L., Wybo, I., Ait El Haj, R., Dediste, A., & Vandenberg, O. (2012). Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 50, 1313–1325. DOI: 10.1128/jcm.05971-11. http://dx.doi.org/10.1128/JCM.05971-1110.1128/JCM.05971-11Search in Google Scholar

[22] Mengoni, A., Barzanti, R., Gonnelli, C., Gabbrielli, R., & Bazzicalupo, M. (2001). Characterization of nickel-resistant bacteria isolated from serpentine soil. Environmental Microbiology, 3, 691–698. DOI: 10.1046/j.1462-2920.2001.00243.x. http://dx.doi.org/10.1046/j.1462-2920.2001.00243.x10.1046/j.1462-2920.2001.00243.xSearch in Google Scholar PubMed

[23] Michaeli, E., Boltižiar, M., Solár, V., & Ivanová, M. (2012). The landfill of industrial waste - lúženec near the former Nickel Smelter at Sered’ Town as an example of environmental load. Životné prostredie, 46, 63–68. (in Slovak) Search in Google Scholar

[24] Sauer, S., Freiwald, A., Maier, T., Kube, M., Reinhardt, R., Kostrzewa, M., & Geider, K. (2008). Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS ONE, 3, e2843. DOI: 10.1371/journal.pone.0002843. http://dx.doi.org/10.1371/journal.pone.000284310.1371/journal.pone.0002843Search in Google Scholar PubMed PubMed Central

[25] Su, J., Wu, Y., Ma, X., Zhang, G., Feng, H., & Zhang, Y. (2004). Soil microbial counts and identification of culturable bacteria in an extreme by arid zone. Folia Microbiologica, 49, 423–429. DOI: 10.1007/bf02931604. http://dx.doi.org/10.1007/BF0293160410.1007/BF02931604Search in Google Scholar PubMed

[26] Van Belkum, A., Welker, M., Erhard, M., & Chatellier, S. (2012). Biomedical mass spectrometry in today’s and tomorrow’s clinical microbiology laboratories. Journal of Clinical Microbiology, 50, 1513–1517. DOI: 10.1128/jcm.00420-12. http://dx.doi.org/10.1128/JCM.00420-1210.1128/JCM.00420-12Search in Google Scholar PubMed PubMed Central

[27] Vargha, M., Takáts, Z., Konopka, A., & Nakatsu, C. H. (2006). Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. Journal of Microbiological Methods, 66, 399–409. DOI: 10.1016/j.mimet.2006.01.006. http://dx.doi.org/10.1016/j.mimet.2006.01.00610.1016/j.mimet.2006.01.006Search in Google Scholar PubMed

[28] Van Veen, S. Q., Claas, E. C. J., & Kuijper, E. J. (2010). High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. Journal of Clinical Microbiology, 48, 900–907. DOI: 10.1128/jcm.02071-09. http://dx.doi.org/10.1128/JCM.02071-0910.1128/JCM.02071-09Search in Google Scholar PubMed PubMed Central

[29] Wang, Y. P., Shi, J. Y., Wang, H., Lin, Q., Chen, X. C., & Chen, Y. X. (2007). The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Environmental Safety, 67, 75–81. DOI: 10.1016/j.ecoenv.2006.03.007. http://dx.doi.org/10.1016/j.ecoenv.2006.03.00710.1016/j.ecoenv.2006.03.007Search in Google Scholar PubMed

[30] Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703. 10.1128/jb.173.2.697-703.1991Search in Google Scholar PubMed PubMed Central

Published Online: 2014-9-4
Published in Print: 2014-11-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-014-0612-0/html
Scroll to top button