Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 4, 2014

Growth and morphological studies of NiO/CuO/ZnO based nanostructured thin films for photovoltaic applications

  • Siddharth Joshi EMAIL logo , Mrunmaya Mudigere , L. Krishnamurthy and G. Shekar
From the journal Chemical Papers

Abstract

At present, inorganic semiconducting materials are the most economical and viable source for the renewable energy industry. The present work deals with the morphological and optical characterization of copper oxide (CuO) and zinc oxide (ZnO) thin films fabricated by layer by layer deposition on nickel oxide (NiO) coated indium tin oxide (ITO) glass by solution processing methods, mainly chemical bath deposition (CBD) and hydrothermal deposition (HTD) processes at room temperature. As a whole, the above inorganic composite materials (NiO/CuO/ZnO) can be applied in photovoltaic cells. An attempt has been made to study structural, morphological and absorption characteristics of NiO/CuO/ZnO heterojunction using state of the art techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV spectroscopy. The energy band gaps of CuO and ZnO have also been calculated and discussed based on the UV spectroscopy measurements.

[1] Cai, G. F., Tu, J. P., Zhang, J., Mai, Y. J., Lu, Y., Gu, C. D., & Wang, X. L. (2012). An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale, 4, 5724–5730. DOI: 10.1039/c2nr31397a. http://dx.doi.org/10.1039/c2nr31397a10.1039/c2nr31397aSearch in Google Scholar PubMed

[2] Cao, L. Y., Park, J. S., Fan, P. Y., Clemens B., & Brongersma, M. L. (2010). Resonant germanium nanoantenna photodetectors. Nano Letters, 10, 1229–1233. DOI: 10.1021/nl9037278. http://dx.doi.org/10.1021/nl903727810.1021/nl9037278Search in Google Scholar PubMed

[3] Chen, L. C., Huang, C. M., Gao, C. S., Wang, G. W., & Hsiao, M. C. (2011). A comparative study of the effects of In2O3 and SnO2 modification on the photocatalytic activity and characteristics of TiO2. Chemical Engineering Journal, 175, 49–55. DOI:10.1016/j.cej.2011.09.032. http://dx.doi.org/10.1016/j.cej.2011.09.03210.1016/j.cej.2011.09.032Search in Google Scholar

[4] Dandeneau, C. S., Jeon, Y. H., Shelton, C. T., Plant, T. K., Cann, D. P., & Gibbons, B. J. (2009). Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films, 517, 4448–4454. DOI:10.1016/j.tsf.2009.01.054. http://dx.doi.org/10.1016/j.tsf.2009.01.05410.1016/j.tsf.2009.01.054Search in Google Scholar

[5] Dar, M. A., Ahsanulhaq, Q., Kim, Y. S., Sohn, J. M., Kim, W. B., & Shin, H. S. (2009). Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydro-thermal method; structural properties and growth mechanism. Applied Surface Science, 255, 6279–6284. DOI:10.1016/j.apsusc.2009.02.002. http://dx.doi.org/10.1016/j.apsusc.2009.02.00210.1016/j.apsusc.2009.02.002Search in Google Scholar

[6] Dimopoulos, T., Peić, A., Müllner, P., Neuschitzer, M., Resel, R., Abermann, S., Postl, M., List, E. J. W., Yakunin, S., Heiss, W., & Brückl, H. (2013). Photovoltaic properties of thin film heterojunctions with cupric oxide absorber. Journal of Renewable and Sustainable Energy, 5, 011205. DOI: 10.1063/1.4791779. http://dx.doi.org/10.1063/1.479177910.1063/1.4791779Search in Google Scholar

[7] Gan, Y., Gu, F. B., Han, D. M., Wang, Z. H., & Guo, G. S. (2010). Biomimetic synthesis of zinc oxide 3D architectures with gelatin as matrix. Journal of Nanomaterials, 2010, 289173. DOI:10.1155/2010/289173. http://dx.doi.org/10.1155/2010/28917310.1155/2010/289173Search in Google Scholar

[8] Ghosh, T., Dutta, M., Mridha, S., & Basak, D. (2009). Effect of Cu doping in the structural, electrical, optical, and optoelectronic properties of sol-gel ZnO thin films. Journal of the Electrochemical Society, 156(4), H285–H289. DOI: 10.1149/1.3079619. http://dx.doi.org/10.1149/1.307961910.1149/1.3079619Search in Google Scholar

[9] Green, M. A. (2001). Third generation photovoltaics: Ultrahigh conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications, 9, 123–135. DOI: 10.1002/pip.360. http://dx.doi.org/10.1002/pip.36010.1002/pip.360Search in Google Scholar

[10] Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., Somorjai, G., & Yang, P. D. (2005). General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 5, 1231–1236. DOI: 10.1021/nl050788p. http://dx.doi.org/10.1021/nl050788p10.1021/nl050788pSearch in Google Scholar PubMed

[11] Han, S. Y., Lee, D. H., Chang, Y. J., Ryu, S. O., Lee, T. J., & Chang, C. H. (2006). The growth mechanism of nickel oxide thin films by room-temperature chemical bath deposition. Journal of the Electrochemical Society, 153(6), C382–C386. DOI:10.1149/1.2186767. http://dx.doi.org/10.1149/1.218676710.1149/1.2186767Search in Google Scholar

[12] Hochbaum, A. I., & Yang, P. D. (2010). Semiconductor nanowires for energy conversion. Chemical Reviews, 110, 527–546. DOI: 10.1021/cr900075v. http://dx.doi.org/10.1021/cr900075v10.1021/cr900075vSearch in Google Scholar

[13] Herion, J., Niekisch, E. A., & Scharl, G. (1980). Investigation of metal oxide/cuprous oxide heterojunction solar cells. Solar Energy Materials, 4, 101–112. DOI: 10.1016/0165-1633(80)90022-2. http://dx.doi.org/10.1016/0165-1633(80)90022-210.1016/0165-1633(80)90022-2Search in Google Scholar

[14] Hsueh, H. T., Chang, S. J., Weng, W. Y., & Hsu, C. L. (2011a). Fabrication and characterization of coaxial p-copper oxide/n-ZnO nanowire photodiodes. IEEE Transactions on Nanotechnology, 11, 127–133. DOI:10.1109/tnano.2011.2159620. http://dx.doi.org/10.1109/TNANO.2011.215962010.1109/TNANO.2011.2159620Search in Google Scholar

[15] Hsueh, H. T., Hsueh, T. J., Chang, S. J., Hung, F. Y., Tsai, T. Y., Weng, W. Y., Hsu, C. L., & Dai, B. T. (2011b). CuO nanowire-based humidity sensors prepared on glass substrate. Sensors and Actuators B: Chemical, 156, 906–911. DOI:10.1016/j.snb.2011.03.004. http://dx.doi.org/10.1016/j.snb.2011.03.00410.1016/j.snb.2011.03.004Search in Google Scholar

[16] Izaki, M., Mizuno, K. T., Shinagawa, T., Inaba, M., & Tasaka, A. (2006). Photochemical construction of photovoltaic device composed of p-copper(I) oxide and n-zinc oxide. Journal of the Electrochemical Society, 153(9), C668–C672. DOI:10.1149/1.2218791. http://dx.doi.org/10.1149/1.221879110.1149/1.2218791Search in Google Scholar

[17] Izaki, M., Shinagawa, T., Mizuno, K. T., Ida, Y., Inaba, M., & Tasaka, A. (2007). Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. Journal of Physics D: Applied Physics, 40, 3326–3329. DOI: 10.1088/0022-3727/40/11/010. http://dx.doi.org/10.1088/0022-3727/40/11/01010.1088/0022-3727/40/11/010Search in Google Scholar

[18] Kanmani, S. S., Ramachandran, K., & Umapathy, S. (2012). Eosin yellowish dye-sensitized ZnO nanostructure-based solar cells employing solid PEO redox couple electrolyte. International Journal of Photoenergy, 2012, 267824. DOI:10.1155/2012/267824. http://dx.doi.org/10.1155/2012/26782410.1155/2012/267824Search in Google Scholar

[19] Karthikeyan, B., Pandiyarajan, T., & Mangaiyarkarasi, K. (2011). Optical properties of sol-gel synthesized calcium doped ZnO nanostructures. Spectrochimica Acta: Molecular and Biomolecular Spectroscopy, 82, 97–101. DOI:10.1016/j.saa.2011.07.005. http://dx.doi.org/10.1016/j.saa.2011.07.00510.1016/j.saa.2011.07.005Search in Google Scholar PubMed

[20] Kidowaki, H., Oku, T., & Akiyama, T. (2012). Fabrication and evaluation of CuO/ZnO heterostructures for photoelectric conversion. International Journal of Research and Reviews in Applied Sciences, 13, 67–72. Search in Google Scholar

[21] Li, J. P., Sun, F. Q., Gu, K. Y., Wu, T. X., Zhai, W., Li, W. S., & Huang, S. F. (2011). Preparation of spindly CuO microparticles for photodegradation of dye pollutants under a halogen tungsten lamp. Applied Catalysis A: General, 406, 51–58. DOI:10.1016/j.apcata.2011.08.007. http://dx.doi.org/10.1016/j.apcata.2011.08.00710.1016/j.apcata.2011.08.007Search in Google Scholar

[22] Liu, H. L., Yang, J. H., Hua, Z., Zhang, Y. J., Yang, L. L., Xiao, L., & Xie, Z. (2010). The structure and magnetic properties of Cu-doped ZnO prepared by sol-gel method. Applied Surface Science, 256, 4162–4165. DOI:10.1016/j.apsusc.2010.01.118. http://dx.doi.org/10.1016/j.apsusc.2010.01.11810.1016/j.apsusc.2010.01.118Search in Google Scholar

[23] Mittiga, A., Salza, E., Sarto, F., Tucci, M., & Vasanthi, R. (2006). Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Applied Physics Letters, 88, 163502. DOI:10.1063/1.2194315. http://dx.doi.org/10.1063/1.219431510.1063/1.2194315Search in Google Scholar

[24] Motoyoshi, R., Oku, T., Kidowaki, H., Suzuki, A., Kikuchi, K., Kikuchi, S., & Jeyadevan, B. (2010). Structure and photovoltaic activity of cupric oxide-based thin film solar cells. Journal of the Ceramic Society of Japan, 118, 1021–1023. DOI: 10.2109/jcersj2.118.1021. http://dx.doi.org/10.2109/jcersj2.118.102110.2109/jcersj2.118.1021Search in Google Scholar

[25] Na, H. G., Kwak, D. S., & Kim, H. W. (2012). Structural, Raman, and photoluminescence properties of doubleshelled coaxial nanocables of In2O3 core with ZnO and AZO shells. Crystal Research and Technology, 47, 79–86. DOI:10.1002/crat.201100430. http://dx.doi.org/10.1002/crat.20110043010.1002/crat.201100430Search in Google Scholar

[26] Olsen, L. C., Bohara, R. C., & Urie, M. W. (1979). Explanation for low-efficiency Cu2O Schottky-barrier solar cells. Applied Physics Letters, 34, 47–49. DOI: 10.1063/1.90593. http://dx.doi.org/10.1063/1.9059310.1063/1.90593Search in Google Scholar

[27] Patil, U. M, Salunkhe, R. R, Gurav, K. V., & Lokhande, C. D. (2008). Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Applied Surface Science, 255, 2603–2607. DOI:10.1016/j.apsusc.2008.07.192. http://dx.doi.org/10.1016/j.apsusc.2008.07.19210.1016/j.apsusc.2008.07.192Search in Google Scholar

[28] Pradhan, D., Sindhwani, S., & Leung, K. T. (2010). Parametric study on dimensional control of ZnO nanowalls and nanowires by electrochemical deposition. Nanoscale Research Letters, 5, 1727–1736. DOI: 10.1007/s11671-010-9702-2. http://dx.doi.org/10.1007/s11671-010-9702-210.1007/s11671-010-9702-2Search in Google Scholar PubMed PubMed Central

[29] Pramanik, P., & Bhattacharya, S. (1990). A chemical method for the deposition of nickel oxide thin films. Journal of the Electrochemical Society, 137, 3869–3870. DOI: 10.1149/1.2086316. http://dx.doi.org/10.1149/1.208631610.1149/1.2086316Search in Google Scholar

[30] Qin, H. W., Zhang, Z. L., Liu, X., Zhang, Y. J., & Hu, J. F. (2010). Room-temperature ferromagnetism in CuO sol-gel powders and films. Journal of Magnetism and Magnetic Materials, 322, 1994–1998. DOI:10.1016/j.jmmm.2010.01.021. http://dx.doi.org/10.1016/j.jmmm.2010.01.02110.1016/j.jmmm.2010.01.021Search in Google Scholar

[31] Umar, A., & Hahn, Y. B. (2006). ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology, 17, 2174–2180. DOI: 10.1088/0957-4484/17/9/016. http://dx.doi.org/10.1088/0957-4484/17/9/01610.1088/0957-4484/17/9/016Search in Google Scholar

[32] Vinodkumar, R., Letthy, K. J., Beena, D., Detty, A. P., Navas, I., Nayar, U. V., Mahadevan Pillai, V. P., Ganesan, V., & Reddy, V. R. (2010). Effect of ITO buffer layers on the structural, optical and electrical properties of ZnO multilayer thin films prepared by pulsed laser deposition technique. Solar Energy Materials and Solar Cells, 94, 68–74. DOI:10.1016/j.solmat.2009.02.017. http://dx.doi.org/10.1016/j.solmat.2009.02.01710.1016/j.solmat.2009.02.017Search in Google Scholar

[33] Wang, J. Z., Du, N., Zhang, H., Yu, J. X., & Yang, D. (2011a). Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. The Journal of Physical Chemistry C, 115, 11302–11305. DOI: 10.1021/jp203168p. http://dx.doi.org/10.1021/jp203168p10.1021/jp203168pSearch in Google Scholar

[34] Wang, J. X., Sun, X. W., Yang, Y., Kyaw, K. K. A., Huang, X. Y., Yin, J. Z., Wei, J., & Demir, H. V. (2011b). Freestanding ZnO-CuO composite nanowire array films and their gas sensing properties. Nanotechnology, 22, 325704. DOI: 10.1088/0957-4484/22/32/325704. http://dx.doi.org/10.1088/0957-4484/22/32/32570410.1088/0957-4484/22/32/325704Search in Google Scholar PubMed

[35] Xia, X. H., Tu, J. P., Zhang, J., Wang, X. L., Zhang, W. K., & Huang, H. (2008). Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochimica Acta, 53, 5721–5724. DOI:10.1016/j.electacta.2008.03.047. http://dx.doi.org/10.1016/j.electacta.2008.03.04710.1016/j.electacta.2008.03.047Search in Google Scholar

[36] Xiang, J., Lu, W., Hu, Y. J., Wu, Y., Yan, H., & Lieber, C. M. (2006). Ge/Si nanowire heterostructures as highperformance field-effect transistors. Nature, 441, 489–493. DOI: 10.1038/nature04796. http://dx.doi.org/10.1038/nature0479610.1038/nature04796Search in Google Scholar PubMed

[37] Xu, Y. Y., Chen, D. R., & Jiao, X. L. (2005). Fabrication of CuO pricky microspheres with tunable size by a simple solution route. The Journal of Physical Chemistry B, 109, 13561–13566. DOI: 10.1021/jp051577b. http://dx.doi.org/10.1021/jp051577b10.1021/jp051577bSearch in Google Scholar PubMed

[38] Yu, H. G., Yu, J. G., Liu, S. W., & Mann, S. (2007). Templatefree hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chemistry of Materials, 19, 4327–4334. DOI: 10.1021/cm070386d. http://dx.doi.org/10.1021/cm070386d10.1021/cm070386dSearch in Google Scholar

[39] Zainelabdin, A., Zaman, S., Amin, G., Nur, O., & Willander, M. (2010). Deposition of well-aligned ZnO nanorods at 50°C on metal, semiconducting polymer, and copper oxides substrates and their structural and optical properties. Crystal Growth & Design, 10, 3250–3256. DOI: 10.1021/cg100390x. http://dx.doi.org/10.1021/cg100390x10.1021/cg100390xSearch in Google Scholar

[40] Zhang, Q. B., Zhang, K. L., Xu, D. G., Yang, G. C., Huang, Y. H., Nie, F. D., Liu, C. M., & Yang, S. H. (2014). CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 60, 208–337. DOI:10.1016/j.pmatsci.2013.09.003. http://dx.doi.org/10.1016/j.pmatsci.2013.09.00310.1016/j.pmatsci.2013.09.003Search in Google Scholar

[41] Zhou, X. F, Hu, Z. L., Fan, Y. Q., Chen, S., Ding, W. P., & Xu, N. P. (2008). Microspheric organization of multilayered ZnO nanosheets with hierarchically porous structures. The Journal of Physical Chemistry C, 112, 11722–11728. DOI: 10.1021/jp802619j. http://dx.doi.org/10.1021/jp802619j10.1021/jp802619jSearch in Google Scholar

[42] Zou, C. W., Wang, J., Liang, F., Xie, W., Shao, L. X., & Fu, D. J. (2012). Large-area aligned CuO nanowires arrays: Synthesis, anomalous ferromagnetic and CO gas sensing properties. Current Applied Physics, 12, 1349–1354. DOI:10.1016/j.cap.2012.03.025. http://dx.doi.org/10.1016/j.cap.2012.03.02510.1016/j.cap.2012.03.025Search in Google Scholar

Published Online: 2014-9-4
Published in Print: 2014-11-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-014-0596-9/html
Scroll to top button