Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 22, 2012

Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media

  • Veronica Gómez-Jacinto EMAIL logo , Tamara García-Barrera , Ines Garbayo-Nores , Carlos Vilchez-Lobato and José-Luis Gómez-Ariza
From the journal Chemical Papers

Abstract

The microalga Chlorella sorokiniana has been used to accumulate selenium and iodine from culture media enriched with these elements as a first stage in the production of supplemented foods. The microalgal colony was grown in a conventional culture medium containing iodine (KI) at concentrations in the range of 150–4000 μg mL−1. Similar experiments were performed with selenium (SeO42−) at concentrations in the range of 20–500 μg mL−1. The concentration of iodine and selenium in the culture medium was analytically monitored daily and the viability of the colony was checked by biomass concentration measurement and by evaluation of the total content of chlorophyll and carotenoids. In addition, photosynthetic activity and the number of cells were also monitored. Iodine accumulation in the algal biomass increased rapidly with time and reached a steady state after 4 h of exposure. With Se exposure the colony viability decreased, although the culture grew well with concentrations of the element of 50 μg mL−1 in the culture medium; this experiment produced Se-enrichment in the alga (3 μg g−1) within 100 h. Sequential extraction of an algal pellet was performed in order to separate Se compounds according to their affinity with the following solvents: hot water to recover low molecular mass Se species, enzymatic extraction with driselase for species associated with the cell wall, sodium dodecyl sulphate (SDS) for water insoluble selenoproteins and, finally, enzymolysis with lipase and pronase that release and fragment residual selenoproteinsproducing compounds with low molecular mass. Size-exclusion chromatography (SEC) coupled with an ICP-MS detector showed the preponderance of Se-containing molecules with low molecular mass, possibly seleno-amino acids. Only a peak of low intensity located at 10 min was observed in the SDS extract that could be associated with a protein with molecular mass of 67 kDa. Finally, analysis of the aqueous extract of alga by reverse-phase chromatography with inductively-coupled plasma mass-spectrometry (RPC-ICP-MS) detection revealed the presence of selenocysteine (SeCys2), selenomethylselenocysteine (SeMetSeCys), selenomethionine (SeMet), and Se(VI), particularly the last two species.

[1] Arnér, E. S. J., & Holmgren, A. (2006). The thioredoxin system in cancer. Seminars in Cancer Biology, 16, 420–426. DOI: 10.1016/j.semcancer.2006.10.009. http://dx.doi.org/10.1016/j.semcancer.2006.10.00910.1016/j.semcancer.2006.10.009Search in Google Scholar PubMed

[2] Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15. http://dx.doi.org/10.1104/pp.24.1.110.1104/pp.24.1.1Search in Google Scholar PubMed PubMed Central

[3] Barceloux, D. G. (1999). Selenium. Clinical Toxicology, 37, 145–172. DOI: 10.1081/clt-100102417. http://dx.doi.org/10.1081/CLT-10010241710.1081/CLT-100102417Search in Google Scholar PubMed

[4] Beckett, G. J., & Arthur, J. R. (2005). Selenium and endocrine systems. Journal of Endocrinology, 184, 455–465. DOI: 10.1677/joe.1.05971. http://dx.doi.org/10.1677/joe.1.0597110.1677/joe.1.05971Search in Google Scholar PubMed

[5] Burianová, I., Machát, J., Niedobová, E., Doucha, J., & Kanický, V. (2005). Fractionation of iodine in iodine-enriched algae Chlorella. Chemické Listy, 99, s273–s276. Search in Google Scholar

[6] Cartes, P., Jara, A. A., Pinilla, L., Rosas, A., & Mora, M. L. (2010). Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Annals of Applied Biology, 156, 297–307. DOI: 10.1111/j.1744-7348.2010.00387.x. http://dx.doi.org/10.1111/j.1744-7348.2010.00387.x10.1111/j.1744-7348.2010.00387.xSearch in Google Scholar

[7] Cases, J., Vacchina, V., Napolitano, A., Caporiccio, B., Besançon, P., Lobinski, R., & Rouanet, J. M. (2001). Selenium from selenium-rich Spirulina is less bioavailable than selenium from sodium selenite and selenomethionine in seleniumdeficient rats. The Journal of Nutrition, 131, 2343–2350. 10.1093/jn/131.9.2343Search in Google Scholar PubMed

[8] Cases, J., Wysocka, I. A., Caporiccio, B., Jouy, N., Besançon, P., Szpunar, J., & Rouanet, J. M. (2002). Assesment of selenium bioavailability from high-selenium Spirulina subfractions in selenium-deficient rats. Journal of Agricultural and Food Chemistry, 50, 3867–3873. DOI: 10.1021/jf011646t. http://dx.doi.org/10.1021/jf011646t10.1021/jf011646tSearch in Google Scholar PubMed

[9] Chen, Y., Hall, M., Graziano, J. H., Slavkovich, V., van Geen, A., Parvez, F., & Ahsan, H. (2007). A prospective study of blood selenium levels and the risk of arsenic-related premalignant skin lesions. Cancer Epidemiology, Biomarkers & Prevention, 16, 207–213. DOI: 10.1158/1055-9965.epi-06-0581. http://dx.doi.org/10.1158/1055-9965.EPI-06-058110.1158/1055-9965.EPI-06-0581Search in Google Scholar PubMed PubMed Central

[10] Gomes-Junior, R. A., Gratão, P. L., Gaziola, S. A., Mazzafera, P., Lea, P. J., & Azevedo, R. A. (2007). Selenium-induced oxidative stress in coffee cell suspension cultures. Functional Plant Biology, 34, 449–456. DOI: 10.1071/fp07010. http://dx.doi.org/10.1071/FP0701010.1071/FP07010Search in Google Scholar PubMed

[11] Liao, C. Y., Zhou, Q. F., Fu, J. J., Shi, J. B., Yuan, C. G., & Jiang, G. B. (2007). Interaction of methylmercury and selenium on the bioaccumulation and histopathology in medaka (Oryzias latipes). Environmental Toxicology, 22, 69–77. DOI: 10.1002/tox.20236. http://dx.doi.org/10.1002/tox.2023610.1002/tox.20236Search in Google Scholar PubMed

[12] Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. DOI: 10.1016/0076-6879(87)48036-1. http://dx.doi.org/10.1016/0076-6879(87)48036-110.1016/0076-6879(87)48036-1Search in Google Scholar

[13] Mandalam, R. K., & Palsson, B. Ø. (1998). Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnology and Bioengineering, 59, 605–611. DOI: 10.1002/(SICI)1097-0290(19980905)59:5〈605::AID-BIT11〉3.0.CO;2-8. http://dx.doi.org/10.1002/(SICI)1097-0290(19980905)59:5<605::AID-BIT11>3.0.CO;2-810.1002/(SICI)1097-0290(19980905)59:5<605::AID-BIT11>3.0.CO;2-8Search in Google Scholar

[14] Rayman, M. P. (2000). The importance of selenium to human health. The Lancet, 356, 233–241. DOI: 10.1016/s0140-6736(00)02490-9. http://dx.doi.org/10.1016/S0140-6736(00)02490-910.1016/S0140-6736(00)02490-9Search in Google Scholar

[15] Rayman, M. P. (2005). Selenium in cancer prevention: a review of the evidence and mechanism of action. Proceedings of the Nutrition Society, 64, 527–542. DOI: 10.1079/pns2005467. http://dx.doi.org/10.1079/PNS200546710.1079/PNS2005467Search in Google Scholar

[16] Romarís-Hortas, V., Moreda-Piñeiro, A., & Bermejo-Barrera, P. (2009). Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination. Talanta, 79, 947–952. DOI: 10.1016/j.talanta.2009.05.036. http://dx.doi.org/10.1016/j.talanta.2009.05.03610.1016/j.talanta.2009.05.036Search in Google Scholar

[17] Schomburg, L., & Köhrle, J. (2008). On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Molecular Nutrition & Food Research, 52, 1235–1246. DOI: 10.1002/mnfr.200700465. http://dx.doi.org/10.1002/mnfr.20070046510.1002/mnfr.200700465Search in Google Scholar

[18] Seppänen, M. M., Kontturi, J., Heras, I. L., Madrid, Y., Cámara, C., & Hartikainen, H. (2010). Agronomic biofortification of Brassica with selenium—enrichment of SeMet and its identification in Brassica seeds and meal. Plant and Soil, 337, 273–283. DOI: 10.1007/s11104-010-0523-y. http://dx.doi.org/10.1007/s11104-010-0523-y10.1007/s11104-010-0523-ySearch in Google Scholar

[19] Steinbrenner, H., & Sies, H. (2009). Protection against reactive oxygen species by selenoproteins. Biochimica et Biophysica Acta, 1790, 1478–1485. DOI: 10.1016/j.bbagen.2009.02.014. http://dx.doi.org/10.1016/j.bbagen.2009.02.01410.1016/j.bbagen.2009.02.014Search in Google Scholar

[20] Suzuki, K. T., & Ogra, Y. (2001). Metabolism of selenium and its interaction with mercury: Mechanisms by a speciation study. Phosphorus, Sulfur, and Silicon and the Related Elements, 171, 135–169. DOI: 10.1080/10426500108046631. http://dx.doi.org/10.1080/1042650010804663110.1080/10426500108046631Search in Google Scholar

[21] Tinggi, U. (2008). Selenium: its role as antioxidant in human health. Environmental Health and Preventive Medicine, 13, 102–108. DOI: 10.1007/s12199-007-0019-4. http://dx.doi.org/10.1007/s12199-007-0019-410.1007/s12199-007-0019-4Search in Google Scholar

[22] Zembala, M., Filek, M., Walas, S., Mrowiec, H., Kornaś, A., Miszalski, Z., & Hartikainen, H. (2010). Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant and Soil, 329, 457–468. DOI: 10.1007/s11104-009-0171-2. http://dx.doi.org/10.1007/s11104-009-0171-210.1007/s11104-009-0171-2Search in Google Scholar

Published Online: 2012-6-22
Published in Print: 2012-9-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0186-7/html
Scroll to top button