Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 23, 2011

Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films

  • Iuliana Jipa EMAIL logo , Anicuta Stoica , Marta Stroescu , Loredana-Mihaela Dobre , Tanase Dobre , Sorin Jinga and Christu Tardei
From the journal Chemical Papers

Abstract

Active packaging materials are the subject of research because their performance exceeds that of traditional packaging. From this class, antimicrobial materials extend the shelf-life of products and reduce the risk of contamination by pathogens. In this paper, new composite materials with antimicrobial properties are obtained by using polyvinyl alcohol and bacterial cellulose powder. Potassium (2E,4E)-hexa-2,4-dienoate was used as the antimicrobial agent. The films thus obtained were characterised using Fourier-transform infrared spectroscopy and scanning electron microscopy. Mass transfer phenomena concerning the release of potassium (2E,4E)-hexa-2,4-dienoate were investigated. The results indicated that the new biocomposite films could be used as antimicrobial packaging materials.

[1] Alves, V., Costa, N., Hilliou, L., Larotonda, F., Gonçalves, M., Sereno, A., & Coelhoso, I. (2006). Design of biodegradable composite films for food packaging. Desalination, 199, 331–333. DOI: 10.1016/j.desal.2006.03.078. http://dx.doi.org/10.1016/j.desal.2006.03.07810.1016/j.desal.2006.03.078Search in Google Scholar

[2] Asran, A. S., Henning, S., & Michler, G. H. (2010). Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level. Polymer, 51, 868–876. DOI: 10.1016/j.polymer.2009.12.046. http://dx.doi.org/10.1016/j.polymer.2009.12.04610.1016/j.polymer.2009.12.046Search in Google Scholar

[3] Choi, J. H., Choi, W. Y., Cha, D. S., Chinnan, M. J., Park, H. J., Leed, D. S., & Park, J. M. (2005). Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film. LWT — Food Science and Technology, 38, 417–423. DOI: 10.1016/j.lwt.2004.07.004. http://dx.doi.org/10.1016/j.lwt.2004.07.00410.1016/j.lwt.2004.07.004Search in Google Scholar

[4] Crank, J. (1975). The mathematics of diffusion (2nd ed., pp. 47–53, 244, 254–257). Oxford, UK: Oxford University Press. Search in Google Scholar

[5] Czaja, W., Krystynowicz, A., Bielecki, S., & Brown, R. M., Jr. (2006). Microbial cellulose-the natural power to heal wounds. Biomaterials, 27, 145–151. DOI: 10.1016/j.biomaterials.2005.07.035. http://dx.doi.org/10.1016/j.biomaterials.2005.07.03510.1016/j.biomaterials.2005.07.035Search in Google Scholar PubMed

[6] Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103–S112. DOI: 10.1016/j.tifs.2008.09.011. http://dx.doi.org/10.1016/j.tifs.2008.09.01110.1016/j.tifs.2008.09.011Search in Google Scholar

[7] Deore, R. K., Kavitha, K., & Tamizhmani, T. G. (2010). Preparation and evaluation of sustained release matrix tablets of tramadol hydrochloride using glyceryl palmitostearate. Tropical Journal of Pharmaceutical Research, 9, 275–281. 10.4314/tjpr.v9i3.56289Search in Google Scholar

[8] Khare, A., & Deshmukh, S. (2006). Studies toward producing eco-friendly plastics. Journal of Plastic Films and Sheeting, 22, 193–211. DOI: 10.1177/8756087906067324. http://dx.doi.org/10.1177/875608790606732410.1177/8756087906067324Search in Google Scholar

[9] Liu, F., Qin, B., He, L., & Song, R. (2009). Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties. Carbohydrate Polymers, 78, 146–150. DOI: 10.1016/j.carbpol.2009.03.021. http://dx.doi.org/10.1016/j.carbpol.2009.03.02110.1016/j.carbpol.2009.03.021Search in Google Scholar

[10] Liu, Y., Geever, L. M., Kennedy, J. E., Higginbotham, C. L., Cahill, P. A., & McGuinness, G. B. (2010). Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 3, 203–209. DOI: 10.1016/j.jmbbm.2009.07.001. http://dx.doi.org/10.1016/j.jmbbm.2009.07.00110.1016/j.jmbbm.2009.07.001Search in Google Scholar PubMed

[11] Musial, W., Kokol, V., & Voncina, B. (2010a). Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures. Chemical Papers, 64, 84–90. DOI: 10.2478/s11696-009-0089-4. http://dx.doi.org/10.2478/s11696-009-0089-410.2478/s11696-009-0089-4Search in Google Scholar

[12] Musial, W., Kokol, V., & Voncina, B. (2010b). Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices. Chemical Papers, 64, 346–353. DOI: 10.2478/s11696-010-0013-y. http://dx.doi.org/10.2478/s11696-010-0013-y10.2478/s11696-010-0013-ySearch in Google Scholar

[13] Patil, S. B., Kulkarni, U., & Bhavik, P. (2010). Formulation and evaluation of diclofenac potassium matrix tablets. International Journal of Pharmaceutical Sciences and Research, 1(8) Supplement, 88–92. Search in Google Scholar

[14] Peppas, N. A. (1985). Analysis of Fickian and non-Fickian drug release from polymers. Pharmaceutica Acta Helvetiae, 60, 110–111. Search in Google Scholar

[15] Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62, 373–380. DOI: 10.1016/S0309-1740(02)00121-3. http://dx.doi.org/10.1016/S0309-1740(02)00121-310.1016/S0309-1740(02)00121-3Search in Google Scholar

[16] Ritger, P. L., & Peppas, N. A. (1987a). A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5, 23–36. DOI: 10.1016/0168-3659(87)90034-4. http://dx.doi.org/10.1016/0168-3659(87)90034-410.1016/0168-3659(87)90034-4Search in Google Scholar

[17] Ritger, P. L., & Peppas, N. A. (1987b). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5, 37–42. DOI: 10.1016/0168-3659(87)90035-6. http://dx.doi.org/10.1016/0168-3659(87)90035-610.1016/0168-3659(87)90035-6Search in Google Scholar

[18] Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285–290. DOI: 10.1016/j.foodhyd.2009.10.003. http://dx.doi.org/10.1016/j.foodhyd.2009.10.00310.1016/j.foodhyd.2009.10.003Search in Google Scholar

[19] Siepmann, J., & Siepmann, F. (2008). Mathematical modeling of drug delivery. International Journal of Pharmaceutics, 364, 328–343. DOI: 10.1016/j.ijpharm.2008.09.004. http://dx.doi.org/10.1016/j.ijpharm.2008.09.00410.1016/j.ijpharm.2008.09.004Search in Google Scholar PubMed

[20] Stoica-Guzun, A., Jecu, L., Gheorghe, A., Raut, I., Stroescu, M., Ghiurea, M., Danila, M., Jipa, I., & Fruth, V. (2011). Biodegradation of poly(vinyl alcohol) and bacterial cellulose composites by Aspergillus niger. Journal of Polymers and the Environment, 19, 69–79. DOI: 10.1007/s10924-010-0257-1. http://dx.doi.org/10.1007/s10924-010-0257-110.1007/s10924-010-0257-1Search in Google Scholar

[21] Yoshida, C. M. P., Bastor, C. E. N., & Franco, T. T. (2010). Modeling of potassium sorbate diffusion through chitosan films. LWT — Food Science and Technology, 43, 584–589. DOI: 10.1016/j.lwt.2009.10.005. http://dx.doi.org/10.1016/j.lwt.2009.10.00510.1016/j.lwt.2009.10.005Search in Google Scholar

[22] Yoshimi, T., Sugiyama, N., Takeoka, Y., Rikukawa, M., Oribe, K., & Aizawa, M. (2011). Changes of material properties of inorganic/organic hybrids fabricated by infiltration of poly(L-lactic acid) into open pores of porous hydroxyapatite ceramics in a simulated body fluid. Journal of the Australian Ceramic Society, 47, 18–22. Search in Google Scholar

Published Online: 2011-11-23
Published in Print: 2012-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0068-4/html
Scroll to top button