Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 14, 2010

Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction

  • Huai-Qing Yu EMAIL logo and Rimin Cong
From the journal Chemical Papers

Abstract

An acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) (4A-PEG-PLA) macromer was firstly prepared. A novel kind of hydrogels was synthesized via the Michael-type addition reaction between (2S,3S)-1,4-bis-sulfanylbutane-2,3-diol (dithiothreitol) and this macromer. Gelation time was determined visually as the time when the precursor solution did not flow on inverting the vials. Hydrogel structure was characterized by FTIR analysis, swelling and degradation tests. It was found that colorless and transparent hydrogels were quickly generated in situ. The gelation time, swelling and degradation behaviors of this kind of hydrogels could be adjusted by changing the concentration of the macromer solution in PBS buffer (pH 7.4). This novel hydrogel is expected to be used as a biomedical material.

[1] Bočková, J., Vojtová L., Přikryl, R., Čechal, J., & Jančř J. (2008). Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications. Chemical Papers, 62, 580–588. DOI: do]10.2478/s11696-008-0076-1. http://dx.doi.org/10.2478/s11696-008-0076-110.2478/s11696-008-0076-1Search in Google Scholar

[2] Cai, S., Liu, Y., Shu, X. Z., & Prestwich, G. D. (2005). Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials, 26, 6054–6067. DOI: 10.1016/j.biomaterials.2005.03.012. http://dx.doi.org/10.1016/j.biomaterials.2005.03.01210.1016/j.biomaterials.2005.03.012Search in Google Scholar

[3] Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M. D., Hoemann, C. D., Leroux, J. C., Atkinson, B. L., Binette, F., & Selmani, A. (2000). Novel injectable neutral so lutions of chitosan form biodegradable gels in situ. Biomaterials, 21, 2155–2161. DOI: 10.1016/S0142-9612(00)00116-2. http://dx.doi.org/10.1016/S0142-9612(00)00116-210.1016/S0142-9612(00)00116-2Search in Google Scholar

[4] de Jong, S. J., De Smedt, S. C., Demeester, J., van Nostrum, C. F., Kettenes-van den Bosch, J. J., & Hennink, W. E. (2001). Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. Journal of Controlled Release, 72, 47–56. DOI: 10.1016/S0168-3659(01)00261-9. http://dx.doi.org/10.1016/S0168-3659(01)00261-910.1016/S0168-3659(01)00261-9Search in Google Scholar

[5] Elbert, D. L., Pratt, A. B., Lutolf, M. P., Halstenberg, S., & Hubbell, J. A. (2001). Protein delivery from materials formed by self-selective conjugate addition reactions. Journal of Controlled Release, 76, 11–25. DOI: 10.1016/S0168-3659(01)00398-4. http://dx.doi.org/10.1016/S0168-3659(01)00398-410.1016/S0168-3659(01)00398-4Search in Google Scholar

[6] Friedman, M., Cavins, J. F., & Wall, J. S. (1965). Relative nucleophilic reactivities of amino groups and mercaptide ions in addition reactions with α,β-unsaturated compounds. Journal of the American Chemical Society, 87, 3672–3682. DOI: 10.1021/ja01094a025. http://dx.doi.org/10.1021/ja01094a02510.1021/ja01094a025Search in Google Scholar

[7] Hennink, W. E., & van Nostrum, C. F. (2002). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 54, 13–36. DOI: 10.1016/S0169-409X(01)00240-X. http://dx.doi.org/10.1016/S0169-409X(01)00240-X10.1016/S0169-409X(01)00240-XSearch in Google Scholar

[8] Kissel, T., Li, Y., & Unger, F. (2002). ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Advanced Drug Delivery Reviews, 54, 99–134. DOI: 10.1016/S0169-409X(01)00244-7. http://dx.doi.org/10.1016/S0169-409X(01)00244-710.1016/S0169-409X(01)00244-7Search in Google Scholar

[9] Lutolf, M. P., & Hubbell, J. A. (2003). Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules, 4, 713–722. DOI: 10.1021/bm025744e. http://dx.doi.org/10.1021/bm025744e10.1021/bm025744eSearch in Google Scholar PubMed

[10] Mather, B. D., Viswanathan, K., Miller, K. M., & Long, T. E. (2006). Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 31, 487–531. DOI: 10.1016/j.progpolymsci.2006.03.001. http://dx.doi.org/10.1016/j.progpolymsci.2006.03.00110.1016/j.progpolymsci.2006.03.001Search in Google Scholar

[11] Metters, A., & Hubbell, J. (2005). Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions. Biomacromolecules, 6, 290–301. DOI: 10.1021/bm049607o. http://dx.doi.org/10.1021/bm049607o10.1021/bm049607oSearch in Google Scholar PubMed

[12] Peppas, N. A., Bures, P., Leobandun, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50, 27–46. DOI: 10.1016/S0939-6411(00)00090-4. http://dx.doi.org/10.1016/S0939-6411(00)00090-410.1016/S0939-6411(00)00090-4Search in Google Scholar

[13] Sawhney, A. S., Pathak, C. P., & Hubbell, J. A. (1993). Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules, 26, 581–587. DOI: 10.1021/ma00056a005. http://dx.doi.org/10.1021/ma00056a00510.1021/ma00056a005Search in Google Scholar

[14] Schoenmakers, R. G., van de Wetering, P., Elbert, D. L., & Hubbell, J. A. (2004). The effect of the linker on the hydrolysis rate of drug-linked ester bonds. Journal of Controlled Release, 95, 291–300. DOI: 10.1016/j.jconrel.2003.12.009. http://dx.doi.org/10.1016/j.jconrel.2003.12.00910.1016/j.jconrel.2003.12.009Search in Google Scholar PubMed

[15] Veverková, E., Droppová, R., & Toma, Š. (2006). Comparison of betaine and l-stachydrine as phase-transfer catalysts in Michael addition and Darzens reaction. Chemical Papers, 60, 333–337. DOI: do]10.2478/s11696-006-0061-5. http://dx.doi.org/10.2478/s11696-006-0061-510.2478/s11696-006-0061-5Search in Google Scholar

Published Online: 2010-8-14
Published in Print: 2010-10-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-010-0055-1/html
Scroll to top button