Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 31, 2010

Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent

  • M. Percino EMAIL logo , Víctor Chapela , Ling-Fa Montiel , Enrique Pérez-Gutiérrez and José Maldonado
From the journal Chemical Papers

Abstract

An efficient Knoevenagel route using green chemistry conditions was applied for the synthesis of halogen- and cyano- substituted pyridinevinylene compounds. Absorption and fluorescence emission spectra of these conjugated compounds were recorded and compared in order to evaluate the effect of substituents on the electronic properties of pyridinevinylene compounds. The substituents studied were terminal Cl and F, two or three aromatic rings, as well as a cyano group attached to a C=C double bond. The compounds synthesized are: (E)-2-(4-fluorostyryl)pyridine, (E)-2-(4-chlorostyryl)pyridine, (E)-4-(4-chlorostyryl)pyridine, 2,3-diphenylacrylonitrile, 3-phenyl-2-(pyridin-2-yl)acrylonitrile, 3-phenyl-2-(pyridin-3-yl)acrylonitrile, 2-phenyl-3-(pyridin-2-yl)acrylonitrile, 3,3′-(1,4-phenylene)bis(2-phenylacrylonitrile), 3,3′-(1,4-phenylene)bis(2-(pyridin-2-yl)acrylonitrile), and 3,3′-(1,4-phenylene)bis(2-(pyridin-3-yl)acrylonitrile). The solvent-free method used in this work allows obtaining each compound by controlling the reaction temperature. The compounds were characterized by infrared spectroscopy and 1H-NMR spectroscopy.

[1] Bellamy, L. J. (1975). The infra-red spectra of complex molecules (3rd ed.). New York, NY, USA: Wiley. 10.1007/978-94-011-6017-9Search in Google Scholar

[2] Belletęte, M., Morin, J.-F., Leclerc, M., & Durocher, G. J. (2005). A theoretical, spectroscopic, and photophysical study of 2,7-carbazolenevinylene-based conjugated derivatives. The Journal of the Physical Chemistry A, 109, 6953–6959. DOI: 10.1021/jp051349h. http://dx.doi.org/10.1021/jp051349h10.1021/jp051349hSearch in Google Scholar

[3] Bergmann, E. D., Ginsburg, D., & Pappo, R. (1959). The Michael reaction. In R. Adams (Ed.) Organic reactions (Vol. 10, pp. 179–555). Hoboken, NJ, USA: Wiley. Search in Google Scholar

[4] Best, S. R., & Thorpe, J. F. (1909). LXXXII.—The formation and reactions of iminocompounds. Part IX. The formation of derivatives of cyclopentane from αδ-dicyano-derivatives of butane. Journal of the Chemical Society, Transactions, 95, 685–714. DOI: 10.1039/CT9099500685. http://dx.doi.org/10.1039/ct909950068510.1039/CT9099500685Search in Google Scholar

[5] Bigi, F., Conforti, M. L., Maggi, R., Piccinno, A., & Sartori, G. (2000). Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles. Green Chemistry, 2, 101–103. DOI: 10.1039/b001246g. http://dx.doi.org/10.1039/b001246g10.1039/b001246gSearch in Google Scholar

[6] Boucard, V. (2001). Kinetic study of the Knoevenagel condensation applied to the synthesis of poly[bicarbazolylene-alt-phenylenebis(cyanovinylene)]s. Macromolecules, 34, 4308–4313. DOI: 10.1021/ma002233g. http://dx.doi.org/10.1021/ma002233g10.1021/ma002233gSearch in Google Scholar

[7] Boucard, V., Benazzi, T., Adès, D., Sauvet, G., & Siove, A. (1997). New alternating donor-acceptor type conjugated copolymer: poly[bicarbazolylene-alt-phenylene-bis(cyanovinylene)]. Synthesis and properties. Polymer, 38, 3697–3703. DOI: 10.1016/S0032-3861(96)00936-6. http://dx.doi.org/10.1016/S0032-3861(96)00936-610.1016/S0032-3861(96)00936-6Search in Google Scholar

[8] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., & Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347, 539–541. DOI: 10.1038/347539a0. http://dx.doi.org/10.1038/347539a010.1038/347539a0Search in Google Scholar

[9] Castle, R. N., & Seese, W. S. (1955). The reaction of pyridine aldehydes with phenylacetonitriles. Journal of Organic Chemistry, 20, 987–989. DOI: 10.1021/jo01365a004. http://dx.doi.org/10.1021/jo01365a00410.1021/jo01365a004Search in Google Scholar

[10] Chapela, V. M., Percino, M. J., & Rodríguez-Barbarín, C. (2003). Crystal structure of 2,6-distyrylpyridine. Journal of Chemical Crystallography, 33, 77–83. DOI: 10.1023/A:1023210422362. http://dx.doi.org/10.1023/A:102321042236210.1023/A:1023210422362Search in Google Scholar

[11] Cope, A. C. (1937). Condensation reactions. I. The condensation of ketones with cyanoacetic esters and the mechanism of the Knoevenagel reaction. Journal of the American Chemical Society, 59, 2327–2330. DOI: 10.1021/ja01290a068. http://dx.doi.org/10.1021/ja01290a06810.1021/ja01290a068Search in Google Scholar

[12] Detert, H., & Sugiono, E. (2000). Soluble oligo(phenylenevinylene) s with electron withdrawing substituents for the use in light emitting diodes. Synthetic Metals, 115, 89–92. DOI: 10.1016/S0379-6779(00)00308-8. http://dx.doi.org/10.1016/S0379-6779(00)00308-810.1016/S0379-6779(00)00308-8Search in Google Scholar

[13] Dubey, P. K., Prasada Reddy, P. V. V., & Srinivas, K. (2007). A facile tandem synthesis of α-benzyl benzimidazole acetonitriles. ARKIVOC, 2007(xv), 192–198. 10.3998/ark.5550190.0008.f19Search in Google Scholar

[14] Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M., & Salaneck, W. R. (1999). Electroluminescence in conjugated polymers. Nature, 397, 121–128. DOI: 10.1038/16393. http://dx.doi.org/10.1038/1639310.1038/16393Search in Google Scholar

[15] Gierschner, J., Lüer, L., Oelkrug, D., Musluoğlu, E., Behnisch, B., & Hanack, M. (2000). Preparation and optical properties of oligophenylenevinylene/perhydrotriphenylene inclusion compounds. Advanced Materials, 12, 757–761. DOI: 10.1002/(SICI)1521-4095(200005)12:10<757::AID-ADMA757>3.0.CO;2-F. http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10<757::AID-ADMA757>3.0.CO;2-F10.1002/(SICI)1521-4095(200005)12:10<757::AID-ADMA757>3.0.CO;2-FSearch in Google Scholar

[16] Giglio, L., Mazzucato, U., Musumarra, G., & Spalletti, A. (2000). Photophysics and photochemistry of 2,6-distyrylpyridine and some heteroanalogues. Physical Chemistry Chemical Physics, 2, 4005–4012. DOI: 10.1039/b004141f. http://dx.doi.org/10.1039/b004141f10.1039/b004141fSearch in Google Scholar

[17] Gillissen, S., Jonforsen, M., Kesters, E., Johansson, T., Theander, M., Andersson, M. R., Inganäs, O., Lutsen, L., & Vanderzande, D. (2001). Synthesis and characterization of poly(pyridine vinylene) via the sulfinyl precursor route. Macromolecules, 34, 7294–7299. DOI: 10.1021/ma010575w. http://dx.doi.org/10.1021/ma010575w10.1021/ma010575wSearch in Google Scholar

[18] Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., & Holmes, A. B. (1993). Efficient light-emitting diodes based on polymers with high electron affinities. Nature, 365, 628–630. DOI: 10.1038/365628a0. http://dx.doi.org/10.1038/365628a010.1038/365628a0Search in Google Scholar

[19] Jin, Y., Ju, J., Kim, J., Lee, S., Kim, J. Y., Park, S. H., Son, S.-M., Jin, S.-H., Lee, K., & Suh, H. (2003). Design, synthesis, and electroluminescent property of CN-poly(dihexylfluorenevinylene) for LEDs. Macromolecules, 36, 6970–6975. DOI: 10.1021/ma025862u. http://dx.doi.org/10.1021/ma025862u10.1021/ma025862uSearch in Google Scholar

[20] Kang, B. S., Kim, D. H., Lim, S. M., Kim, J., Seo, M.-L., Bark, K. M., Shin, S. C., & Nahm, K. (1997). Thiophene-based π-conjugated emitting polymers: Synthesis and photophysical properties of poly[2-(dodecyloxy)-5-methyl-m-phenyleneethynylene] and poly[2-(dodecyloxy)-5-methyl-m-bis(ethynyl) phenyleneoligo-thienylene]s. Macromolecules, 30, 7196–7201. DOI: 10.1021/ma9709462. http://dx.doi.org/10.1021/ma970946210.1021/ma9709462Search in Google Scholar

[21] Knoevenagel, E. (1896). Ueber eine Darstellungsweise des Benzylidenacetessigesters. Berichte der Deutschen Chemischen Gesellschaft, 29, 172–174. DOI: 10.1002/cber.18960290133. http://dx.doi.org/10.1002/cber.1896029013310.1002/cber.18960290133Search in Google Scholar

[22] Krauch, H., & Kunz, W. (1969). Reaktionen der organischen Chemie (4th ed.). Heidelberg, Germany: Hüthig Verlag. Search in Google Scholar

[23] Liu, M. S., Jiang, X., Liu, S., Herguth, P., & Jen, A. K.-Y. (2002). Effect of cyano substituents on electron affinity and electron-transporting properties of conjugated polymers. Macromolecules, 35, 3532–3538. DOI: 10.1021/ma011790f. http://dx.doi.org/10.1021/ma011790f10.1021/ma011790fSearch in Google Scholar

[24] Mitschke, U., & Bäuerle, P. (2000). The electroluminescence of organic materials. Journal of Materials Chemistry, 10, 1471–1507. DOI: 10.1039/a908713c. http://dx.doi.org/10.1039/a908713c10.1039/a908713cSearch in Google Scholar

[25] Nakanishi, K., & Solomon, P. H. (1977). Infrared absorption spectroscopy (2nd ed.). Oakland, CA, USA: Holden-day, Inc. Search in Google Scholar

[26] Patai, S., & Israeli, Y. (1960a). The kinetics and mechanics of carbonyl-methylene condensations. Part VI. The reactions of malononitrile with aromatic aldehydes in water. Journal of the Chemical Society, 1960, 2020–2024. DOI: 10.1039/JR9600002020. 10.1039/JR9600002020Search in Google Scholar

[27] Patai, S., & Israeli, Y. (1960b). The kinetics and mechanisms of carbonyl-methylene condensations. Part VII. The reaction of malononitrile with aromatic aldehydes in ethanol. Journal of the Chemical Society, 1960, 2025–2029. DOI: 10.1039/JR9600002025. 10.1039/JR9600002025Search in Google Scholar

[28] Patai, S., & Israeli, Y. (1960c). The kinetics and mechanisms of carbonyl-methylene condensations. Part IX. The reaction of cyanoacetamide with aromatic aldehydes in ethanol and in water. Journal of the Chemical Society, 1960, 2038–2043. DOI: 10.1039/JR9600002038. 10.1039/JR9600002038Search in Google Scholar

[29] Patai, S., & Zabicky, J. (1960). The kinetics and mechanisms of carbonyl-methylene condensations. Part VIII. The reaction of ethyl cyanoacetate with aromatic aldehydes in ethanol, in water, and in ethanol-water mixtures. Journal of the Chemical Society, 1960, 2030–2037. DOI: 10.1039/JR9600002030. 10.1039/JR9600002030Search in Google Scholar

[30] Percino, M. J., & Chapela, V. M. (2000). Unexpected intermediate 1-phenyl-2-(4-pyridyl)ethanol isolated from benzaldehyde and 4-picoline condensation reaction. Research on Chemical Intermediates, 26, 303–307. DOI: 10.1163/156856700X00804. http://dx.doi.org/10.1163/156856700X0080410.1163/156856700X00804Search in Google Scholar

[31] Percino, M. J., Chapela, V. M., Montiel, L.-F., & Rodríguez-Babarín, C. (2008). X-ray crystal structures of a 1-(p-fluorophenyl)-2-(α-pyridyl)ethanol intermediate and the 1-(p-fluorophenyl)-2-(α-pyridyl)ethene dehydration compound obtained from the condensation reaction of 2-methylpyridine and p-pluorobenzaldehyde. The Open Crystallography Journal, 1, 37–41. DOI: 10.2174/1874846500801010037. http://dx.doi.org/10.2174/187484650080101003710.2174/1874846500801010037Search in Google Scholar

[32] Percino, M. J., Chapela, V. M., Salmón, M., Espinoza-Pérez, G., Herrera, A. M., & Flores, A. (1997). X-ray crystal structure of 2-styrylpyridine. Journal of Chemical Crystallography, 27, 549–552. DOI: 10.1007/BF02576446. http://dx.doi.org/10.1007/BF0257644610.1007/BF02576446Search in Google Scholar

[33] Percino, M. J., Chapela, V. M., Salmón, M., & Toscano, R. A. (2000). Unexpected crystallization and X-ray crystal structure of racemic 1-phenyl-2-(4-pyridyl)ethanol intermediate. Journal of Chemical Crystallography, 30, 385–388. DOI: 10.1023/A:1009577721468. http://dx.doi.org/10.1023/A:100957772146810.1023/A:1009577721468Search in Google Scholar

[34] Percino, M. J., Chapela, V. M., Sánchez, A., & Maldonado-Rivera, J. L. (2006). Condensation reactions of methylpyridines and aromatic aldehydes under catalyst and solvent free conditions. Chemistry: An Indian Journal, 3(9–10), 262–267. Search in Google Scholar

[35] Percino, M. J., Chapela, V. M., Urzúa, O., Montiel, L.-F., & Rodríguez-Barbarín, C. (2007). 1-(p-Fluorophenyl)-2-(2′-pyridyl)ethanol and 1-(p-fluorophenyl)-2-(2′-pyridyl)ethene obtained from the condensation reaction of 2-picoline and p-fluorophenylaldehyde under catalyst- and solvent-free conditions. Research on Chemical Intermediates, 33, 623–629. DOI: 10.1163/156856707781749946. 10.1163/156856707781749946Search in Google Scholar

[36] Pinto, M. R., Hu, B., Karasz, F. E., & Akcelrud, L. (2000). Light-emitting copolymers of cyano-containing PPV-based chromophores and a flexible spacer. Polymer, 41, 2603–2611. DOI: 10.1016/S0032-3861(99)00430-9. http://dx.doi.org/10.1016/S0032-3861(99)00430-910.1016/S0032-3861(99)00430-9Search in Google Scholar

[37] Roncalli, J. (1997). Synthetic principles for bandgap control in linear π-conjugated systems. Chemical Reviews, 97, 173–206. DOI: 10.1021/cr950257t. http://dx.doi.org/10.1021/cr950257t10.1021/cr950257tSearch in Google Scholar PubMed

[38] Silverstein, R. M., & Webster, F. X. (1997). Spectrometric identification of organic compounds (6th ed.). Hoboken, NJ, USA: Wiley. Search in Google Scholar

[39] Smith, J. M., Jr. (1947). Halogenated phenacylpyridines. U.S. patent No. 2482521. Washington, D.C., USA: U.S. Patent and Trademark Office. Search in Google Scholar

[40] Tanaka, K., & Toda, F. (2000). Solvent-free organic synthesis. Chemical Reviews, 100, 1025–1074. DOI: 10.1021/cr940089p. http://dx.doi.org/10.1021/cr940089p10.1021/cr940089pSearch in Google Scholar PubMed

[41] Tetsuzo, K., Takayuki, S., & Toshio, A. (1969). Synthesis of methylpyridine derivatives. XXV. Synthesis of α-substituted 2-pyridineacetonitriles. Journal of the Pharmaceutical Society of Japan, 89, 188–193. Search in Google Scholar

[42] Wang, G.-W., & Cheng, B. (2004). Solvent-free and aqueous Knoevenagel condensation of aromatic ketones with malononitrile. ARKIVOC, 2004(ix), 4–8. 10.3998/ark.5550190.0005.902Search in Google Scholar

[43] Williams, D. H., & Fleming, I. (1980). Spectroscopic methods in organic chemistry (3rd ed.). Maidenhead, UK: McGraw-Hill. Search in Google Scholar

Published Online: 2010-3-31
Published in Print: 2010-6-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-010-0012-z/html
Scroll to top button