Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 25, 2009

Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes

  • Goran Janjić EMAIL logo , Miloš Milčić and Snežana Zarić
From the journal Chemical Papers

Abstract

Intramolecular metal-ligand OH/π (MLOH/π) and metal-ligand NH/π (MLNH/π) interactions in transition metal complexes between aqua or ammine ligand and ligand containing a C6-aromatic ring were investigated in crystal structures deposited in the Cambridge Structural Database (CSD). These intramolecular interactions appear in 38 structures with aqua ligand as the hydrogen atom donor and in 10 structures with ammine ligand as the hydrogen atom donor. Among all these complexes only one is negatively charged, 14 are positively charged and 33 are neutral indicating that the overall charge of the molecule has an influence on the XH/π (X = O or N) interactions. Energy estimated by DFT calculations is approximately 19 kJ mol−1 for the MLOH/π interactions and approximately 15 kJ mol−1 for the MLNH/π interactions.

[1] Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallographica, Section B, 58, 380–388. DOI: 10.1107/S0108768102003890. http://dx.doi.org/10.1107/S010876810200389010.1107/S0108768102003890Search in Google Scholar

[2] Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M., & Watson, D. G. (1991). The development of versions 3 and 4 of the Cambridge Structural Database System. Journal of Chemical Information and Computer Sciences, 31, 187–204. DOI: 10.1021/ci00002a004. 10.1021/ci00002a004Search in Google Scholar

[3] Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Guy Orpen, A., & Taylor, R. (1987). Tables of bond lengths determined by x-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, S1–S19. DOI: 10.1039/P298700000S1. 10.1039/p298700000s1Search in Google Scholar

[4] Atwood, J. L., Harnada, F., Robinson, K. D., Orr, G. W., & Vincent, R. L. (1991). X-ray diffraction evidence for aromatic π-hydrogen bonding to water. Nature, 349, 683–684. DOI: 10.1038/349683a0. http://dx.doi.org/10.1038/349683a010.1038/349683a0Search in Google Scholar

[5] Bakshi, P. K., Linden, A., Vincent, B. R., Roe, S. P., Adhikesavalu, D., Cameron, T. S., & Knop, O. (1994). Crystal chemistry of tetraradial species. Part 4. Hydrogen bonding to aromatic π systems: crystal structures of fifteen tetraphenylborates with organic ammonium cations. Canadian Journal of Chemistry, 72, 1273–1293. DOI: 10.1139/v94-161. http://dx.doi.org/10.1139/v94-16110.1139/v94-161Search in Google Scholar

[6] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Search in Google Scholar

[7] Bogdanović, G. A., Spasojević-de Biré, A. S., & Zarić, S. D. (2002). Evidence based on crystal structures and calculations of a C-H⋯π interaction between an organic moiety and a chelate ring in transition metal complexes. European Journal of Inorganic Chemistry, 2002, 1599–1602. DOI: 10.1002/1099-0682(200207)2002:7〈1599::AID-EJIC1599〉3.0.CO;2-I. http://dx.doi.org/10.1002/1099-0682(200207)2002:7<1599::AID-EJIC1599>3.0.CO;2-I10.1002/1099-0682(200207)2002:7<1599::AID-EJIC1599>3.0.CO;2-ISearch in Google Scholar

[8] Burghardt, T. P., Juranić, N., Macura, S., & Ajtai, K. (2002). Cation-π interaction in a folded polypeptide. Biopolymers, 63, 261–272. DOI: 10.1002/bip.10070. http://dx.doi.org/10.1002/bip.1007010.1002/bip.10070Search in Google Scholar

[9] Castińeiras, A., Sicilia-Zafra, A. G., Gonzáles-Pérez, J. M., Choquesillo-Lazarte, D., & Niclós-Gutiérrez, J. (2002). Intramolecular ”aryl-metal chelate ring“ π,π-interactions as structural evidence for metalloaromaticity in (aromatic α,α′-diimine)-copper(II) chelates: Molecular and crystal structure of aqua(1,10-phenanthroline)(2-benzylmalonato)copper(II) three-hydrate. Inorganic Chemistry, 41, 6956–6958. DOI: 10.1021/ic026004h. http://dx.doi.org/10.1021/ic026004h10.1021/ic026004hSearch in Google Scholar

[10] Courty, A., Mons, A., Dimicoli, I., Piuzzi, F., Gaigeot, M. P., Brenner, V., de Pujo, P., & Millié, P. (1998). Quantum effects in the threshold photoionization and energetics of the benzene-H2O and benzene-D2O complexes: Experiment and simulation. Journal of Physical Chemistry A, 102, 6590–6600. DOI: 10.1021/jp980761c. http://dx.doi.org/10.1021/jp980761c10.1021/jp980761cSearch in Google Scholar

[11] Craven, V., Zhang, C., Janiak, C., Rheinwald, G., & Lang, H. (2003). Synthesis, structure and solution chemistry of (5,5′-dimethyl-2,2′-bipyridine)(IDA)copper(II) and structural comparison with aqua(IDA)(1,10-phenanthroline)copper (II) (IDA = iminodiacetato). Zeitschrift für Anorganische und Allgemeine Chemie, 629, 2282–2290. DOI: 10.1002/zaac.200300223. http://dx.doi.org/10.1002/zaac.20030022310.1002/zaac.200300223Search in Google Scholar

[12] Ditchfield, R.; Hehre, W. J., & Pople, J. A. (1971). Self-consistent molecular-orbital methods. IX. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. Journal of Chemical Physic, 54, 724–728. DOI: 10.1063/1.1674902. http://dx.doi.org/10.1063/1.167490210.1063/1.1674902Search in Google Scholar

[13] Dunning, T. H., Jr., & Hay, P. J. (1977). Gaussian basis sets for molecular calculations. In Schaefer, H. F., III. (Ed.), Methods of electronic structure theory (Modern Theoretical Chemistry Series-Volume 3) (pp. 1–27). New York: Plenum Press. Search in Google Scholar

[14] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M., Gonzalez, W. C., & Pople, J. A. (2004). Gaussian 03, Revision D.02 [computer software]. Wallingford, CT: Gaussian, Inc. Search in Google Scholar

[15] Gordon, M. S. (1980). The isomers of silacyclopropane. Chemical Physics Letters, 76, 163–168. DOI: 10.1016/0009-2614(80)80628-2. http://dx.doi.org/10.1016/0009-2614(80)80628-210.1016/0009-2614(80)80628-2Search in Google Scholar

[16] Gutowski, H. S., Emilsson, T., & Arunan, E. (1993). Low-J rotational spectra, internal rotation, and structures of several benzene-water dimers. Journal of Chemical Physics, 99, 4883–4893. DOI: 10.1063/1.466038. http://dx.doi.org/10.1063/1.46603810.1063/1.466038Search in Google Scholar

[17] Hariharan, P. C., & Pople, J. A. (1973). Influence of polarization functions on MO hydrogenation energies. Theoretica Chimica Acta, 28, 213–222. DOI: 10.1007/BF00533485. http://dx.doi.org/10.1007/BF0053348510.1007/BF00533485Search in Google Scholar

[18] Hariharan, P. C., & Pople, J. A. (1974). Accuracy of AHn equilibrium geometries by single determinant molecular or bital theory. Molecular Physics, 27, 209–214. DOI: 10.1080/00268977400100171. http://dx.doi.org/10.1080/0026897740010017110.1080/00268977400100171Search in Google Scholar

[19] Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for potassium to gold including the outermost core. Journal of Chemical Physics, 82, 299–310. DOI: 10.1063/1.448799. http://dx.doi.org/10.1063/1.44897510.1063/1.448799Search in Google Scholar

[20] Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. Journal of Chemical Physics, 56, 2257–2261. DOI: 10.1063/1.1677527. http://dx.doi.org/10.1063/1.167752710.1063/1.1677527Search in Google Scholar

[21] Jiang, Y. F., Xi, C. J., Liu, Y. Z., Niclós-Gutiérrez, J., & Choquesillo-Lazarte, D. (2005). Intramolecular “CH⋯π (metal chelate ring) interactions” as structural evidence for metalloaromaticity in bis(pyridine-2,6-diimine)RuII complexes. European Journal of Inorganic Chemistry, 2005, 1585–1588. DOI: 10.1002/ejic.200400864. http://dx.doi.org/10.1002/ejic.20040086410.1002/ejic.200400864Search in Google Scholar

[22] Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Search in Google Scholar

[23] Levitt, M., & Perutz, M. F. (1988). Aromatic rings act as hydrogen bond acceptors. Journal of Molecular Biology, 201, 751–754. DOI: 10.1016/0022-2836(88)90471-8. http://dx.doi.org/10.1016/0022-2836(88)90471-810.1016/0022-2836(88)90471-8Search in Google Scholar

[24] Mao, L. S., Wang, Y. L., Liu, Y. M., & Hu, X. C. (2004). Molecular determinants for ATP-binding in proteins: A data mining and quantum chemical analysis. Journal of Molecular Biology, 336, 787–807. DOI: 10.1016/j.jmb.2003.12.056. http://dx.doi.org/10.1016/j.jmb.2003.12.05610.1016/j.jmb.2003.12.056Search in Google Scholar

[25] Masui, H. (2001). Metalloaromaticity. Coordination Chemistry Reviews, 219-221, 957–992. DOI: 10.1016/S0010-8545(01)00389-7. http://dx.doi.org/10.1016/S0010-8545(01)00389-710.1016/S0010-8545(01)00389-7Search in Google Scholar

[26] Medaković, V. B., Milčić, M. K., Bogdanović, G. A, & Zarić, S. D. (2004). C-H⋯π interactions in the metal-porphyrin complexes with chelate ring as the H acceptor. Journal of Inorganic Biochemistry, 98, 1867–1873. DOI: 10.1016/j.jinorgbio.2004.08.012. http://dx.doi.org/10.1016/j.jinorgbio.2004.08.01210.1016/j.jinorgbio.2004.08.012Search in Google Scholar

[27] Milčić, M. K., Medaković, V. B., Sredojević D. N., Juranić N. O., & Zarić, S. D. (2006a). Electron delocalization mediates the metal-dependent capacity for CH/π interactions of acetylacetonato chelates. Inorganic Chemistry, 45, 4755–4763. DOI: 10.1021/ic051926g. http://dx.doi.org/10.1021/ic051926g10.1021/ic051926gSearch in Google Scholar

[28] Milčić, M. K., Medaković, V. B., & Zarić, S. D. (2006b). CH/π interactions of pi-system of acetylacetonato chelate ring: Comparison of CH/π interactions of Ni(II)-acetylacetonato chelate and benzene rings. Inorganica Chimica Acta, 359, 4427–4430. DOI: 10.1016/j.ica.2006.06.022. http://dx.doi.org/10.1016/j.ica.2006.06.02210.1016/j.ica.2006.06.022Search in Google Scholar

[29] Milčić, M. K., Ostojić, B., & Zarić, S. D. (2007). Are chelate rings aromatic? Calculations of magnetic properties of acetylacetonato and o-benzoquinonediimine chelate rings. Inorganic Chemistry, 46, 7109–7114. DOI: 10.1021/ic062292w. http://dx.doi.org/10.1021/ic062292w10.1021/ic062292wSearch in Google Scholar

[30] Milčić, M. K., Tomić, Z. D., & Zarić S. D. (2004). Very strong metal ligand aromatic cation-π interactions in transition metal complexes: intermolecular interaction in tetraphenylborate salts. Inorganica Chimica Acta, 357, 4327–4329. DOI: 10.1016/j.ica.2004.06.019. http://dx.doi.org/10.1016/j.ica.2004.06.01910.1016/j.ica.2004.06.019Search in Google Scholar

[31] Milčić, M. K., & Zarić S. D. (2001). Intramolecular metal ligand-aromatic cation-π interactions in crystal structures of transition metal complexes. European Journal of Inorganic Chemistry, 2001, 2143–2150. DOI: 10.1002/1099-0682(200108)2001:8〈2143::AID-EJIC2143〉3.0.CO;2-C. http://dx.doi.org/10.1002/1099-0682(200108)2001:8<2143::AID-EJIC2143>3.0.CO;2-C10.1002/1099-0682(200108)2001:8<2143::AID-EJIC2143>3.0.CO;2-CSearch in Google Scholar

[32] Mons, M., Dimicoli, I., Tardivel, B., Piuzzi, F., Brenner, V., & Millié, P. (2002). Energetics of a model NH-π interaction: the gas phase benzene-NH3 complex. Physical Chemistry Chemical Physics, 4, 571–576. DOI: 10.1039/b108146m. http://dx.doi.org/10.1039/b108146m10.1039/b108146mSearch in Google Scholar

[33] Mukhopadhyay, U., Choquesillo-Lazarte, D., Niclós-Gutiérrez, J., & Bernal, I. (2004). A critical look on the nature of the intra-molecular interligand π,π-stacking interaction in mixed-ligand copper(II) complexes of aromatic side-chain amino acidates and α,α′-diimines. CrystEngComm, 6, 627–632. DOI: 10.1039/b417707j. http://dx.doi.org/10.1039/b417707j10.1039/B417707JSearch in Google Scholar

[34] Nishio, M. (2004). CH/π hydrogen bonds in crystals. CrysEngComm, 6, 130–158. DOI: 10.1039/b313104a. http://dx.doi.org/10.1039/b313104a10.1039/b313104aSearch in Google Scholar

[35] Novokmet, S., Heinemann, F. W., Zahl, A., & Alsfasser, R. (2005). Aromatic interactions in unusual backbone nitrogen-coordinated zinc peptide complexes. A crystallographic and spectroscopic study. Inorganic Chemistry, 44, 4796–4805. DOI: 10.1021/ic0500053. http://dx.doi.org/10.1021/ic050005310.1021/ic0500053Search in Google Scholar

[36] Pletneva, E. V., Laederach, A. T., Fulton, D. B., & Kostić, N. M. (2001). The role of cation-π interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains. Journal of the American Chemical Society, 123, 6232–6245. DOI: 10.1021/ja010401u. http://dx.doi.org/10.1021/ja010401u10.1021/ja010401uSearch in Google Scholar

[37] Pucci, D., Albertini, V., Bloise, R., Bellusci, A., Cataldi, A., Catapano, C. V., Ghedini, M., & Crispini, A. (2006). Synthesis and anticancer activity of cyclopalladated complexes containing 4-hydroxy-acridine. Journal of Inorganic Biochemistry, 100, 1575–1578. DOI: 10.1016/j.jinorgbio.2006.04.009. http://dx.doi.org/10.1016/j.jinorgbio.2006.04.00910.1016/j.jinorgbio.2006.04.009Search in Google Scholar

[38] Rodham, D. A., Suzuki, S., Suenram, R. D., Lovas, F. J., Dasgupta, S., Goddard, W. A. III, & Blake, G. A. (1993). Hydrogen bonding in the benzene-ammonia dimer. Nature, 362, 735–737. DOI: 10.1038/362735a0. http://dx.doi.org/10.1038/362735a010.1038/362735a0Search in Google Scholar

[39] Sinnokrot, M. O., Valeev, E. F., & Sherrill, C. D. (2002). Estimates of the ab initio limit for π-π interactions: The benzene dimer. Journal of the American Chemical Society, 124, 10887–10893. DOI: 10.1021/ja025896h. http://dx.doi.org/10.1021/ja025896h10.1021/ja025896hSearch in Google Scholar

[40] Sredojević, D. N., Tomić, Z. D., & Zarić, S. D. (2007a). Influence of metal and ligand types on stacking interactions of phenyl rings with square-planar transition metal complexes. Central European Journal of Chemistry, 5, 20–31. DOI: 10.2478/s11532-006-0068-3. http://dx.doi.org/10.2478/s11532-006-0068-310.2478/s11532-006-0068-3Search in Google Scholar

[41] Sredojević, D., Bogdanović, G. A., Tomić, Z. D., & Zarić, S. D. (2007b). Stacking vs. CH-π interactions between chelate and aryl rings in crystal structures of square-planar transition metal complexes. CrystEngComm, 9, 793–798. DOI: 10.1039/b704302c. http://dx.doi.org/10.1039/b704302c10.1039/b704302cSearch in Google Scholar

[42] Steiner, T. (2002). The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41, 48–76. DOI: 10.1002/1521-3773(20020104)41:1〈48::AID-ANIE48〉3.0.CO;2-U. http://dx.doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USearch in Google Scholar

[43] Steiner, T., & Koellner, G. (2001). Hydrogen bonds with piacceptors in proteins: frequencies and role in stabilizing local 3D structures. Journal of Molecular Biology, 305, 535–557. DOI: 10.1006/jmbi.2000.4301. http://dx.doi.org/10.1006/jmbi.2000.430110.1006/jmbi.2000.4301Search in Google Scholar

[44] Steiner, T., Schreurs, A. M. M., Lutz, M., & Kroon, J. (2001). Making very short O-H⋯Ph hydrogen bonds: the example of tetraphenylborate salts. New Journal of Chemistry, 25, 174–178. DOI: 10.1039/b004932h. http://dx.doi.org/10.1039/b004932h10.1039/b004932hSearch in Google Scholar

[45] Suezawa, H., Yoshida, T., Umezawa, Y., Tsuboyama, S., & Nishio, M. (2002). CH/π interactions implicated in the crystal structure of transition metal compounds — a database study. European Journal of Inorganic Chemistry, 2002, 3148–3155. DOI: 10.1002/1099-0682(200212)2002:12〈3148AID-EJIC3148〉3.0.CO;2-X. http://dx.doi.org/10.1002/1099-0682(200212)2002:12<3148::AID-EJIC3148>3.0.CO;2-X10.1002/1099-0682(200212)2002:12<3148::AID-EJIC3148>3.0.CO;2-XSearch in Google Scholar

[46] Suzuki, S., Green, P. G., Bumgarner, R. E., Dasgupta, S., Goddard, W. A. III, & Blake, G. A. (1992). Benzene forms hydrogen bonds with water. Science, 257, 942–945. DOI: 10.1126/science.257.5072.942. http://dx.doi.org/10.1126/science.257.5072.94210.1126/science.257.5072.942Search in Google Scholar

[47] Tomić, Z. D., Novaković, S. B., & Zarić, S. D. (2004). Intermolecular interactions between chelate rings and phenyl rings in square-planar copper(II) complexes. European Journal of Inorganic Chemistry, 2004, 2215–22118. DOI: 10.1002/ejic.200400086. http://dx.doi.org/10.1002/ejic.200400086Search in Google Scholar

[48] Tomić, Z. D., Sredojević, D. N., & Zarić, S. D. (2006). Stacking interactions between chelate and phenyl rings in square planar transition metal complexes. Crystal Growth & Design, 6, 29–33. DOI: 10.1021/cg050392r. http://dx.doi.org/10.1021/cg050392r10.1021/cg050392rSearch in Google Scholar

[49] Tsubaki, V., Tohyama, S., Koike, K., Saitoh, H., & Ishitani, O. (2005). Effect of intramolecular π-π and CH-π interactions between ligands on structure, electrochemical and spectroscopic properties of fac-[Re(bpy)(CO)3(PR3)]+ (bpy = 2,2′-bipyridine; PR3 = trialkyl or triarylphosphines). Dalton Transactions, 2005, 385–395. DOI: 10.1039/b407947g. Search in Google Scholar

[50] Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., & Tanabe, K. (2000). Origin of the attraction and directionality of the NH/π interaction: comparison with OH/π and CH/π interactions. Journal of the American Chemical Society, 122, 11450–11458. DOI: 10.1021/ja001901a. http://dx.doi.org/10.1021/ja001901a10.1021/ja001901aSearch in Google Scholar

[51] Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., & Tanabe, K. (2002). Origin of attraction and directionality of the π/π interaction: model chemistry calculations of benzene dimer interaction. Journal of the American Chemical Society, 124, 104–112. DOI: 10.1021/ja0105212. http://dx.doi.org/10.1021/ja010521210.1021/ja0105212Search in Google Scholar

[52] Umezawa, Y., Tsuboyama, S., Takahashi, H., Uzawa, J., & Nishio, M. (1999). CH/π interaction in the conformation of organic compounds. A database study. Tetrahedron, 55, 10047–10056. DOI: 10.1016/S0040-4020(99)00539-6. http://dx.doi.org/10.1016/S0040-4020(99)00539-610.1016/S0040-4020(99)00539-6Search in Google Scholar

[53] Vaupel, S., Brutschy, B., Tarakeshwar, P., & Kim, K. S. (2006). Characterization of weak NH-π intermolecular interactions of ammonia with various substituted π-systems. Journal of the American Chemical Society, 128, 5416–5426. DOI: 10.1021/ja056454j. http://dx.doi.org/10.1021/ja056454j10.1021/ja056454jSearch in Google Scholar

[54] Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. Journal of Chemical Physics, 82, 284–298. DOI: 10.1063/1.448800. http://dx.doi.org/10.1063/1.44880010.1063/1.448800Search in Google Scholar

[55] Zarić, S. D. (1999) Cation-π interaction with transition metal complex as cation. Chemical Physics Letters, 311, 77–80. DOI: 10.1016/S0009-2614(99)00805-2. http://dx.doi.org/10.1016/S0009-2614(99)00805-210.1016/S0009-2614(99)00805-2Search in Google Scholar

[56] Zarić, S. D. (2003). Metal ligand aromatic cation-π interactions. European Journal of Inorganic Chemistry, 2003, 2197–2209. DOI: 10.1002/ejic.200200278. http://dx.doi.org/10.1002/ejic.20020027810.1002/ejic.200200278Search in Google Scholar

[57] Zarić, S. D., Popović, D., & Knapp, E. W. (2000). Metal ligand-aromatic cation-π interactions in metallo-proteins: ligands coordinated to metal interact with aromatic residues. Chemistry — A European Journal, 6, 3935–3942. DOI:10.1002/1521-3765(20001103)6:21〈3935::AID-CHEM3935〉3.0.CO;2-J. http://dx.doi.org/10.1002/1521-3765(20001103)6:21<3935::AID-CHEM3935>3.0.CO;2-J10.1002/1521-3765(20001103)6:21<3935::AID-CHEM3935>3.0.CO;2-JSearch in Google Scholar

Published Online: 2009-3-25
Published in Print: 2009-6-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-009-0020-z/html
Scroll to top button