Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 1, 2007

The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics

  • R. Greenwood EMAIL logo , B. Lapčíková , M. Surýnek , K. Waters and L. Lapčík
From the journal Chemical Papers

Abstract

The zeta potentials of kaolin dilute and concentrated suspensions were monitored using the techniques of electrophoresis and electroacoustics, respectively. The effect of addition of salt (KCl), a polymer material (Triton X-100), and an anionic surfactant (sodium dodecyl sulphate, SDS) on the suspension properties was investigated by electrophoresis. Electroacoustics was employed for the measurement of zeta potentials for the highest possible kaolin content in suspension and the effect of dilution. The effect of aging of a freshly prepared sample and kaolin isoelectric point was also studied. Using both techniques it was noted that there was no isoelectric point, just a maximum value in the magnitude of the kaolin suspension zeta potential. These maxima were observed also in the presence of Triton X-100 and SDS. An increase of the concentration of KCl and SDS in suspension shifted the maxima towards more acidic values, while in the presence of Triton X-100 the position of the zeta potential maxima remained constant. Electroacoustic techniques revealed that a freshly prepared concentrated suspension requires about six hours to equilibrate to achieve a steady zeta potential. Diluting the concentrated suspensions led to decrease of the zeta potential as ions bound to the surface desorbed and screened the surface charge. The zeta potential maxima remained unchanged even after heating the powder in an oven at 200°C (to remove any organic material) thereby suggesting that the most likely explanation for the maxima is isomorphic substitution.

[1] Johnson, S. B., Dixon, D. R., and Scales, P. J., Colloids Surf., A 146, 281 (1999). http://dx.doi.org/10.1016/S0927-7757(98)00726-210.1016/S0927-7757(98)00726-2Search in Google Scholar

[2] Lapčík, L., Alince, B., and van de Ven, T. G. M., J. Pulp Pap. Sci. 21, J19 (1995). Search in Google Scholar

[3] Rice, B. P., Chen, C. G., Cloos, L., and Curliss, D., SAMPE J. 37, 7 (2001). Search in Google Scholar

[4] Chen, C. G. and Curliss, D., SAMPE J. 37, 11 (2001). Search in Google Scholar

[5] Jama, C. and Delobel, R., in Proceedings of ICCE-12, Tenerife, Spain, 2005. Search in Google Scholar

[6] Martínez-Vilariño, S., Hui, D., Miller, S. G., and Daniel, L., in Proceedings of ICCE-12, Tenerife, Spain, 2005. Search in Google Scholar

[7] Ophir, A., Dotan, A., Dodiuk, H., Belinsly, I., and Kenig, S., in Proceedings of ICCE-12, Tenerife, Spain, 2005. Search in Google Scholar

[8] O’Brien, R. W., J. Fluid Mech. 212, 81 (1990). http://dx.doi.org/10.1017/S002211209000187210.1017/S0022112090001872Search in Google Scholar

[9] O’Brien, R. W., Midmore, B. R., Lamb, A., and Hunter, R. J., Faraday Discuss. Chem. Soc. 90, 301 (1990). http://dx.doi.org/10.1039/dc990900030110.1039/dc9909000301Search in Google Scholar

[10] O’Brien, R. W., J. Colloid Interface Sci. 171, 495 (1995). http://dx.doi.org/10.1006/jcis.1995.120810.1006/jcis.1995.1208Search in Google Scholar

[11] Hunter, R. J., Colloids Surf., A 141, 37 (1998). http://dx.doi.org/10.1016/S0927-7757(98)00202-710.1016/S0927-7757(98)00202-7Search in Google Scholar

[12] Greenwood, R., Adv. Colloid Interface Sci. 106, 55 (2003). http://dx.doi.org/10.1016/S0001-8686(03)00105-210.1016/S0001-8686(03)00105-2Search in Google Scholar

[13] www.colloidal-dynamics.com. Application note. Search in Google Scholar

[14] O’Brien, R. W. and Rowlands, W. N., J. Colloid Interface Sci. 159, 471 (1993). http://dx.doi.org/10.1006/jcis.1993.134810.1006/jcis.1993.1348Search in Google Scholar

[15] Rowlands, W. N. and O’Brien, R. W., J. Colloid Interface Sci. 175, 190 (1995). http://dx.doi.org/10.1006/jcis.1995.144510.1006/jcis.1995.1445Search in Google Scholar

[16] Hunter, R. J. and James, M., Clays Clay Miner. 40, 644 (1992). http://dx.doi.org/10.1346/CCMN.1992.040060310.1346/CCMN.1992.0400603Search in Google Scholar

[17] Mpofu, P., Addai-Mensah, J., and Ralston, J., J. Colloid Interface Sci. 271, 145 (2004). http://dx.doi.org/10.1016/j.jcis.2003.09.04210.1016/j.jcis.2003.09.042Search in Google Scholar PubMed

[18] Mpofu, P., Addai-Mensah, J., and Ralston, J., Int. J. Miner. Process. 71, 247 (2003). http://dx.doi.org/10.1016/S0301-7516(03)00062-010.1016/S0301-7516(03)00062-0Search in Google Scholar

[19] Mpofu, P., Addai-Mensah, J., and Ralston, J., J. Colloid Interface Sci. 261, 349 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00113-910.1016/S0021-9797(03)00113-9Search in Google Scholar

[20] Angove, M. J., Wells, J. D., and Johnson, B. B., Colloids Surf., A 146, 243 (1999). http://dx.doi.org/10.1016/S0927-7757(98)00799-710.1016/S0927-7757(98)00799-7Search in Google Scholar

[21] Taylor, M. L., Morris, G. E., Self, P. G., and Smart, R. S., J. Colloid Interface Sci. 250, 28 (2002). http://dx.doi.org/10.1006/jcis.2002.834110.1006/jcis.2002.8341Search in Google Scholar

[22] Janek, M. and Lagaly, G., Colloid Polym. Sci. 281, 293 (2003). http://dx.doi.org/10.1007/s00396-002-0759-z10.1007/s00396-002-0759-zSearch in Google Scholar

[23] Hunter, R. J. and Alexander, A. E., J. Colloid Sci. 18, 820 (1963). http://dx.doi.org/10.1016/0095-8522(63)90076-X10.1016/0095-8522(63)90076-XSearch in Google Scholar

[24] Williams, D. J. A. and Williams, K. P., J. Colloid Interface Sci. 65, 79 (1978). http://dx.doi.org/10.1016/0021-9797(78)90260-610.1016/0021-9797(78)90260-6Search in Google Scholar

[25] Kretzschmar, R., Holthoff, H., and Sandticher, H., J. Colloid Interface Sci. 202, 95 (1998). http://dx.doi.org/10.1006/jcis.1998.544010.1006/jcis.1998.5440Search in Google Scholar

[26] Kaya, A. and Yukselen, Y., J. Hazard. Mater. 120, 119 (2005). http://dx.doi.org/10.1016/j.jhazmat.2004.12.02310.1016/j.jhazmat.2004.12.023Search in Google Scholar PubMed

[27] Yukselen, Y. and Kaya, A., Water, Air, Soil Pollut. 145, 155 (2003). http://dx.doi.org/10.1023/A:102368421338310.1023/A:1023684213383Search in Google Scholar

[28] Kaya, A. and Yukselen, Y., Can. Geotech. J. 42, 1280 (2005). http://dx.doi.org/10.1139/t05-04810.1139/t05-048Search in Google Scholar

[29] Tekin, N., Demirbas, O., and Alkan, M., Microporous Mesoporous Mater. 85, 340 (2005). http://dx.doi.org/10.1016/j.micromeso.2005.07.00410.1016/j.micromeso.2005.07.004Search in Google Scholar

[30] Olhoeft, G. R., Tables of Room Temperature Electrical Properties for Selected Rocks and Minerals with Dielectric Permittivity Statistics, p. 24. US Geological Survey Open File Report 77-993, 1979. 10.3133/ofr79993Search in Google Scholar

[31] Hussain, S. A., Demirci, S., and Ozbayoglu, G., J. Colloid Interface Sci. 184, 535 (1996). http://dx.doi.org/10.1006/jcis.1996.064910.1006/jcis.1996.0649Search in Google Scholar

[32] Greenwood, R. and Bergström, L., J. Eur. Ceram. Soc. 17, 537 (1997). http://dx.doi.org/10.1016/S0955-2219(96)00097-010.1016/S0955-2219(96)00097-0Search in Google Scholar

[33] Alkan, M., Demirbas, O., and Dogan, M., Microporous Mesoporous Mater. 83, 51 (2005). http://dx.doi.org/10.1016/j.micromeso.2005.03.01110.1016/j.micromeso.2005.03.011Search in Google Scholar

[34] Ferris, A. P. and Jepson, W. B., J. Colloid Interface Sci. 51, 245 (1975). http://dx.doi.org/10.1016/0021-9797(75)90110-110.1016/0021-9797(75)90110-1Search in Google Scholar

[35] Waters, K. E., Greenwood, R. W., Rowson, N. A., Lapčík, L., Jr., and Lapčíková, B., Paper No. 159E, World Congress on Particle Technology 5. Orlando, Florida, 2006. Search in Google Scholar

[36] Torres-Sanchez, R. M., Basaldella, E. I., and Marco, J. F., J. Colloid Interface Sci. 215, 339 (1999). http://dx.doi.org/10.1006/jcis.1999.624110.1006/jcis.1999.6241Search in Google Scholar PubMed

Published Online: 2007-4-1
Published in Print: 2007-4-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-007-0003-x/html
Scroll to top button