Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 19, 2007

Hemidesmus indicus Protects against ethanol-induced liver toxicity

  • Nadana Saravanan EMAIL logo and Namasivayam Nalini

Abstract

Alcoholic liver disease (ALD) is one of the most common diseases in modern society. A large number of studies are in progress aiming to identify natural substances that would be effective in reducing the severity of ALD. Although there are currently a number of drugs on the market, their long-term use can have numerous side effects. Hemidesmus indicus is an indigenous Ayurvedic medicinal plant used in soft drinks in India. In this study, we examined the effects of its ethanolic root extract on experimental liver damage in order to evaluate its hepatoprotective effects against hepatotoxicity induced in rats by ethanol at a dosage of 5 g/kg body weight for 60 days. The H. indicus root extract was given at a dose of 500 mg/kg body weight for the last 30 days of the experiment. The animals were monitored for food intake and weight gain. The liver was analysed for the degree of lipid peroxidation using thiobarbituric acid reactive substances (TBARS) and antioxidant status using the activities of glutathione-depedendant enzymes. The degree of liver damage was analysed using serum marker enzyme activities, the total protein, albumin, globulin, ceruloplasmin and liver glycogen contents, and the A/G ratio. The Fourier transform infrared spectra (FT-IR) of the liver tissues were recorded in the region of 4000–400 cm−1. The ethanol-fed rats showed significantly elevated liver marker enzyme activities, lipid peroxidation levels and reduced antioxidant levels as compared to the control rats. Oral administration of H. indicus for the latter 30 days resulted in an increased food intake and weight gain, decreased TBARS levels, near normal levels of glutathione-dependent enzymes, increased total protein, albumin, globulin and liver glycogen contents, an increased A/G ratio, and decreased liver marker enzyme activities and ceruloplasmin levels. The relative intensity of the liver FT-IR bands for the experimental groups were found to be altered significantly (p < 0.05) compared to the control samples. For the group that had H. indicus co-administered with ethanol, the intensity of the bands was near normal. Moreover, the results of the FT-IR study correlated with our biochemical results.

[1] Diehl, A.M. Liver disease in alcohol abusers: clinical perspective. Alcohol 27 (2002) 7–11. http://dx.doi.org/10.1016/S0741-8329(02)00204-510.1016/S0741-8329(02)00204-5Search in Google Scholar

[2] Lin, C.N., Chung, M.I. and Gan, K.H. Novel antihepatotoxic principles of Solanum incanum. Planta Med. 54 (1988) 222. http://dx.doi.org/10.1055/s-2006-96240910.1055/s-2006-962409Search in Google Scholar

[3] Zima, T., Fialova, L., Mestek, O., Janebova, M., Crkovska, J., Malbohan, I., Stipek, S., Mikulikova, L. and Popov, P. Oxidative stress, metabolism of ethanol and alcohol-related diseases. J. Biomed. Sci. 1 (2001) 59–70. http://dx.doi.org/10.1007/BF0225597210.1007/BF02255972Search in Google Scholar

[4] Plaa, G.L. and Witschi, H. Chemicals, drugs and lipid peroxidation. Annu. Rev. Pharmacol. Toxicol. 6 (1976) 125–141. http://dx.doi.org/10.1146/annurev.pa.16.040176.00101310.1146/annurev.pa.16.040176.001013Search in Google Scholar

[5] Cederbaum, A.I. Role of lipid peroxidation and oxidative stress in alcohol toxicity. Free Radic. Biol. Med. 7 (1989) 537–539. http://dx.doi.org/10.1016/0891-5849(89)90029-410.1016/0891-5849(89)90029-4Search in Google Scholar

[6] Lewis, R.N.A.H. and McElhaney, R.N. Fourier transform infrared spectroscopy in the study of hydrated lipids and lipid bilayer membranes. In: Infrared Spectroscopy of Biomolecules (Mantsch, H.H. and Chapman D., Eds.) Wiley-Liss, New York, 1996, 159. Search in Google Scholar

[7] Wong, P.T.T., Lacelle, S. and Yazdi, H.M. Normal and malignant human colonic tissues investigated by pressure-tunning FT-IR spectroscopy. Appl. Spectrosc. 47 (1993) 1830–1836. http://dx.doi.org/10.1366/000370293406588510.1366/0003702934065885Search in Google Scholar

[8] Severcan, F., Gorgulu, G., Gorgulu, S.T. and Guray, T. Rapid monitoring of diabetes-induced lipid peroxidation by Fourier transform infrared spectroscopy: Evidence from rat liver microsomal membranes. Anal. Biochem. 339 (2005) 36–40. http://dx.doi.org/10.1016/j.ab.2005.01.01110.1016/j.ab.2005.01.011Search in Google Scholar

[9] Galin, D., Gridina, N.Y., Kruglova F.B. and Pushchuk, O.P. FT-IR spectroscopy studies of nucleic acids damage. Talanta 53 (2000) 233–246. http://dx.doi.org/10.1016/S0039-9140(00)00462-810.1016/S0039-9140(00)00462-8Search in Google Scholar

[10] Kerai, M.D.J., Waterfield, C.J., Kenyon, S.H., Asker, D.S. and Timbrell, J.A. Reversal of ethanol induced hepatic steatosis and lipidperoxidation by taurine: a study in rats. Alcohol 34 (1999) 529–541. Search in Google Scholar

[11] Saravanan, R., Viswanathan, P. and Pugalendi, K.V. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats. Life Sci. 78 (2006) 713–718. http://dx.doi.org/10.1016/j.lfs.2005.05.06010.1016/j.lfs.2005.05.060Search in Google Scholar

[12] Alam, M. I., Auddy, B. and Gomes, A. Isolation, purification and partial characterization of viper venom inhibiting factor from the root extract of the Indian medicinal plant sarsaparilla (Hemidesmus indicus R.Br). Toxicon 2 (1994) 1551–1557. http://dx.doi.org/10.1016/0041-0101(94)90314-X10.1016/0041-0101(94)90314-XSearch in Google Scholar

[13] Saravanan, N., Rajasankar, S. and Nalini, N. Antioxidant effect of 2-hydroxy 4-methoxy benzoic acid on ethanol-induced hepatotoxicity in rats. J. Pharm. Pharmacol. 59 (2007) 445–453. http://dx.doi.org/10.1211/jpp.59.3.001510.1211/jpp.59.3.0015Search in Google Scholar

[14] Prabakan, M., Anandan, R. and Devaki, T. Protective effect of Hemidesmus indicus against rifampicin and isoniazid-induced hepatotoxicity in rats. Fitoterapia 71 (2000) 55–59. Search in Google Scholar

[15] Baheti, J.R., Goyal, R.K. and Shah, G.B. Hepatoprotective activity of Hemidesmus indicus R.Br.in rats. Indian J. Exp. Biol. 44 (2006) 399–402. Search in Google Scholar

[16] Sarasan, V., Soniya, E.V. and Nair, G.M. Regeneration of Indian sarasaparilla, Hemidesmus indicus R.Br. through organogenesis and somatic embryogenesis. Indian J. Exp. Biol. 32 (1994) 284–287. Search in Google Scholar

[17] Anonymous. Indian Pharmacopoeia, second edition. Government of India, New Delhi, 1966, 57. Search in Google Scholar

[18] Verma, P.R., Joharapurkar, A.A., Chatpalliwar, V.A., Asnani, A.J. Antinociceptive activity of alcoholic extract of Hemidesmus indicus R.Br. in mice. J. Ethnopharmacol. 102 (2005) 298–301. http://dx.doi.org/10.1016/j.jep.2005.05.03910.1016/j.jep.2005.05.039Search in Google Scholar

[19] Enomoto, N., Yamashina, S., Kono, H., Schemmer, P., Rivera, C.A., Enomoto, A., Nishiura, T., Nishimura, T., Brenner, D.A. and Thurman, R.G. Development of a new, simple rat model of early alcohol-induced liver injury based on sensitization of Kupffer cells. Hepatology 29 (1999) 1680–1689. http://dx.doi.org/10.1002/hep.51029063310.1002/hep.510290633Search in Google Scholar

[20] Das, S., Prakash, R. and Devaraj, S.N. Antidiarrhoeal effects of methanolic root extract of Hemidesmus indicus (Indian sarsaparilla) — an in vitro and in vivo study. Indian J. Exp. Biol. 41 (2003) 363–366. Search in Google Scholar

[21] Ohkawa, H., Ohishi, N. and Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95 (1979) 351–358. http://dx.doi.org/10.1016/0003-2697(79)90738-310.1016/0003-2697(79)90738-3Search in Google Scholar

[22] Yagi, K. Lipid peroxides and human disease. Chem. Physiol. Lipids 45 (1978) 337–351. http://dx.doi.org/10.1016/0009-3084(87)90071-510.1016/0009-3084(87)90071-5Search in Google Scholar

[23] Reitman, S. and Frankel, S. A colorimetric method for the determination of serum glutamate oxaloacetic and glutamate pyruvic transaminases. Am. J. Clin. Pathol. 28 (1957) 56–63. Search in Google Scholar

[24] Kind, P.R.N. and King, E.J. Estimation of plasma phosphatases by determination of hydrolyzed phenol with amino-antipyrine. J. Clin. Path. 7 (1954) 330–322. http://dx.doi.org/10.1136/jcp.7.4.32210.1136/jcp.7.4.322Search in Google Scholar

[25] King, J. Practical clinical enzymology (Van, D. Ed.) Nastrand Co., London, 1965, 83–93. Search in Google Scholar

[26] Rosalki, S.B. and Rau, D. Serum gamma-glutamyl transpeptidase activity in alcoholism. Clin. Chem. Acta 39 (1972) 41–47. http://dx.doi.org/10.1016/0009-8981(72)90297-510.1016/0009-8981(72)90297-5Search in Google Scholar

[27] Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. and Hoekstra, W.G. Selenium: biochemical role as a component of glutathione peroxidase. Science 179 (1973) 588–590. http://dx.doi.org/10.1126/science.179.4073.58810.1126/science.179.4073.588Search in Google Scholar

[28] Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82 (1959) 70–77. http://dx.doi.org/10.1016/0003-9861(59)90090-610.1016/0003-9861(59)90090-6Search in Google Scholar

[29] Carlberg, I. and Mannervik, B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 250 (1975) 5475–5480. Search in Google Scholar

[30] Habig, W.H. and Jakoby, W.B. Glutathione-S-transferases (rat and human). Methods Enzymol. 77 (1981) 218–231. http://dx.doi.org/10.1016/S0076-6879(81)77029-010.1016/S0076-6879(81)77029-0Search in Google Scholar

[31] Lowry, O.H. Roseborough, N.J. Farr, A.L. and Randal, R.J. Protein measurement with Folin’s phenol reagent. J. Biol. Chem. 193 (1951) 265–275. Search in Google Scholar

[32] Reinhold, J.G. In: Standard methods in clinical chemistry (Reiner, M. Ed.), Academic Press, New York, 1953, 88. Search in Google Scholar

[33] Ravin, H.A. An improved colorimetric enzymatic assay of ceruloplasmin. J. Lab. Clin. Med. 58 (1961)161–168. Search in Google Scholar

[34] Morales, M.A., Jabbagry A.J. and Terenizi, H.R. Neurospora News Lett. 20 (1973) 24. Search in Google Scholar

[35] Severcan, F., Toyran, N., Kaptan, N. and Turan, B. Fourier transform infrared study of the effect of diabetes on rat liver and heart tissues in the C-H region. Talanta 53 (2000) 55–59. http://dx.doi.org/10.1016/S0039-9140(00)00379-910.1016/S0039-9140(00)00379-9Search in Google Scholar

[36] Jagadeesan, G., Kavitha A.V. and Subashini J. FT-IR study of the influence of Tribulus terrestris on mercury intoxicated mice, Mus musculus liver. Trop. Biomed. 22 (2005) 15–22. Search in Google Scholar

[37] Pirola, R.C. and Lieber, C.S. Energy wastage in rats given drugs that induce microsomal enzymes. J. Nutr. 105 (1975) 1544–1548. Search in Google Scholar

[38] Lieber, C.S. Alcohol, liver and nutrition. J. Am. Coll. Nutr. 10 (1991) 602–632. 10.1080/07315724.1991.10718182Search in Google Scholar

[39] Baldi, E., Burra, P., Plebani, M. and Salvagnini, M. Serum malondialdehyde and mitochondrial aspartate aminotransferase activity as markers of chronic alcohol intake and alcoholic liver disease. Ital. J. Gastrol. 25 (1993) 429–432. Search in Google Scholar

[40] Goldberg, D.M. and Watts, C. Serum enzyme changes as evidence of liver reaction to oral alcohol. Gastroenterology 49 (1965) 256–261. Search in Google Scholar

[41] Friedman, R.B., Anderson, R.E., Entine, S.M. and Hirshberg, S.B. Effects of diseases on clinical laboratory tests. Clin. Chem. 6 (1980) 1D–476D. Search in Google Scholar

[42] Ahmed, B., Alam, T., Varshney, M. and Khan, A.S. Hepatoprotective activity of two plants belonging to the Apiaceae and the Euphorbiaceae family. J. Ethnopharmacol. 79 (2002) 313–316. http://dx.doi.org/10.1016/S0378-8741(01)00392-010.1016/S0378-8741(01)00392-0Search in Google Scholar

[43] Bucher, J.R., Tien, M. and Aust, S.D. The requirement of ferric ion in the initiation of lipid peroxidation by chelated ferrous ion. Biochem. Biophys. Res. Commun. 111 (1983) 777–784. http://dx.doi.org/10.1016/0006-291X(83)91366-910.1016/0006-291X(83)91366-9Search in Google Scholar

[44] Dormandy, T.L. Free radical reactions in biological systems. Ann. R. Coll. Surg. Engl. 62 (1980)188–194. Search in Google Scholar

[45] Van Horn, C.G., Ivester, P. and Cunningham, C.C. Chronic ethanol consumption and liver glycogen synthesis. Arch. Biochem. Biophys. 392 (2001) 145–152. http://dx.doi.org/10.1006/abbi.2001.243310.1006/abbi.2001.2433Search in Google Scholar

[46] Porter, N.A., Caldwell, S.E. and Mills, K.A. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30 (1995) 277–290. http://dx.doi.org/10.1007/BF0253603410.1007/BF02536034Search in Google Scholar

[47] Nordmann, R. Alcohol and antioxidant systems. Alcohol 29 (1994) 513–522. Search in Google Scholar

[48] Ikuo, N., Masako, H., Hiroshi, T., Mitsuaki, M., and Kunio, Y. Lipid peroxide levels of serum lipoprotein fractions of diabetic patients. Biochem. Med. 25 (1991) 373–378. Search in Google Scholar

[49] Winrow, V.R., Winyard, P.G., Morris, C.J. and Black, D.R. Free radicals in inflammation: Secondary messengers and mediators of tissue destruction. Br. Med. Bull. 49 (1993) 506–517. Search in Google Scholar

[50] Santiard, D., Ribiere, C., Nordmann, R. and Houee-Levin, C. Inactivation of Cu, Zn-superoxide dismutase by free radicals derived from ethanol metabolism: a gamma radiolysis study. Free Radic. Biol. Med. 19 (1995) 121–127. http://dx.doi.org/10.1016/0891-5849(95)00008-L10.1016/0891-5849(95)00008-LSearch in Google Scholar

[51] Mary, N.K. Achuthan, C.R. Babu, B.H. and Padikkala, J. In vitro antioxidant and antithrombotic activity of Hemidesmus indicus (L) R.Br. J. Ethnopharmacol. 87 (2003) 187–191. http://dx.doi.org/10.1016/S0378-8741(03)00119-310.1016/S0378-8741(03)00119-3Search in Google Scholar

[52] Pares, A. Planas, R. Torres, M. Caballeria, J. Viver, J.M. Acero, D. Panes, J. Rigau, J. Santos, J. and Rodes, J. Effect of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicentral trial. J. Hepatol. 28 (1998) 615–621. http://dx.doi.org/10.1016/S0168-8278(98)80285-710.1016/S0168-8278(98)80285-7Search in Google Scholar

[53] Reed, D.J. Glutathione: toxicological implications. Annu. Rev. Pharmacol. Toxicol. 30 (1990) 603–631. http://dx.doi.org/10.1146/annurev.pa.30.040190.00313110.1146/annurev.pa.30.040190.003131Search in Google Scholar PubMed

[54] Hayes, J.D. and Pulford, D.J. The glutathione-S-transferase supergene family: Regulation of GST and the contribution of isoenzymes to cancer protection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 35 (1995) 455–600. Search in Google Scholar

[55] Bladeren, P.J.V. and Ommen, B.V. The inhibition of glutathione-S-transferase: mechanisms, toxic consequences and therapeutic benefits. Pharmacol. Ther. 51 (1991) 35–46. http://dx.doi.org/10.1016/0163-7258(91)90040-S10.1016/0163-7258(91)90040-SSearch in Google Scholar

[56] Balasubramaniyan, V., Kalaivani Sailaja, J. and Nalini, N. Role of leptin on alcohol induced oxidative stress. Pharmacol. Res. 47 (2003) 211–216. http://dx.doi.org/10.1016/S1043-6618(02)00317-110.1016/S1043-6618(02)00317-1Search in Google Scholar

[57] Ravishankara, M.N., Shrivastava, N., Padh, H. and Rajani, M. Evaluation of antioxidant properties of root bark of Hemidesmus indicus R. Br. (Anantmul). Phytomedicine 9 (2002) 153–60. http://dx.doi.org/10.1078/0944-7113-0010410.1078/0944-7113-00104Search in Google Scholar

[58] Garcia-Ruiz, C., Morales, A., Colell, A., Ballesta, A., Rodes, J., Kaplowitz, N. and Fernandez-Checa, J.C., Feeding S-adenosyl-L-methionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes. Hepatology 21 (1995) 207–214. http://dx.doi.org/10.1002/hep.184021013310.1002/hep.1840210133Search in Google Scholar

[59] Iimuro, Y., Bradford, B.U., Yamashina, S., Rusyn, I., Nakagami, M., Enomoto, N., Kono, H., Frey, W., Forman, D., Brenner, D. and Thurman, R.G. The glutathione precursor L-2-oxothiazolidine-4-carboxylic acid protects against liver injury due to chronic enteral ethanol exposure in the rat. Hepatology 31 (2000) 391–398. http://dx.doi.org/10.1002/hep.51031021910.1002/hep.510310219Search in Google Scholar

[60] Priyadarsini, K.I., Maity, D.K., Naik, G.H., Kumar, M.S., Unnikrishnan, M.K., Satav, J.G. and Mohan, H. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med. 35 (2003) 475–484. http://dx.doi.org/10.1016/S0891-5849(03)00325-310.1016/S0891-5849(03)00325-3Search in Google Scholar

[61] Sroka, Z. and Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 1 (2003) 753–758. http://dx.doi.org/10.1016/S0278-6915(02)00329-010.1016/S0278-6915(02)00329-0Search in Google Scholar

[62] Adak, S., Mazumder, A. and Banerjee, R.K. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase involvement of an arginine and a tyrosine residue in aromatic donor binding. Biochem. J. 314 (1996) 985–991. Search in Google Scholar

[63] Navas Diaz, A., Garcia Sanchez, F. and Gonzalez Garcia, J.A. Phenol derivatives as enhancers and inhibitors of luminal-H2O2-horseradish peroxidase chemiluminescence. J. Biolumin. Chemilumin. 13 (1998) 75–84. http://dx.doi.org/10.1002/(SICI)1099-1271(199803/04)13:2<75::AID-BIO469>3.0.CO;2-710.1002/(SICI)1099-1271(199803/04)13:2<75::AID-BIO469>3.0.CO;2-7Search in Google Scholar

[64] Alanko, J., Riutta, A., Holm, P., Mucha, I., Vapaatalo, H. and Metsa-Ketela, T. Modulation of arachidonic acid metabolism by phenols: Relation to their structure and antioxidant properties. Free Radic. Biol. Med. 26 (1999) 193–201. http://dx.doi.org/10.1016/S0891-5849(98)00179-810.1016/S0891-5849(98)00179-8Search in Google Scholar

[65] Halliwell, B. and Chirico, S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 57 (1993) 715–725. 10.1093/ajcn/57.5.715SSearch in Google Scholar

[66] Freifelder, D. Physical Chemistry, 2nd edition, Freeman, W.H. and Company, New York, 1982. Search in Google Scholar

[67] Toyran, N., Zorlu, F., Donmez, G., Oge, K. and Severcan, F., Chronic hypoperfusion alters the content and structure of proteins and lipids of rat brain homogenates: a Fourier transform infrared spectroscopy study. Eur. Biophys. J. 33 (2004) 549–554. http://dx.doi.org/10.1007/s00249-004-0396-110.1007/s00249-004-0396-1Search in Google Scholar

[68] Severcan, F., Sahin, I. and Kazanci, N. Melatonin strongly interacts with zwitterionic model membranes-evidence from Fourier transform. Biochim. Biophys. Acta 1668 (2005) 215–222. http://dx.doi.org/10.1016/j.bbamem.2004.12.00910.1016/j.bbamem.2004.12.009Search in Google Scholar

[69] Mantsch, H.H., and Chapman, D. (Eds) Infrared Spectroscopy of Biomolecules, Wiley, New York, 1996. Search in Google Scholar

[70] Toyran, N. and Severcan, F. Competitive effect of vitamin D2 and Ca2+ on phospholipid model membranes: An FT-IR study. Chem. Phys. Lipids 123 (2003) 165–176. http://dx.doi.org/10.1016/S0009-3084(02)00194-910.1016/S0009-3084(02)00194-9Search in Google Scholar

[71] Liu, K.Z., Bose, R. and Mantsch, H.H Infrared spectroscopic study of diabetic platelets. Vibrat. Spec. 860 (2002) 1–6. Search in Google Scholar

[72] MacSween, R.N. and Burt, A.D. Histologic spectrum of alcoholic liver disease. Semin. Liver Dis. 6 (1986) 221–232. http://dx.doi.org/10.1055/s-2008-104060510.1055/s-2008-1040605Search in Google Scholar PubMed

[73] Sarkar, S.N., Chattopadhyay, S.K. and Majumdar, A.C. Subacute toxicity of urea herbicide, isoproturon in male rats. Indian J. Exp. Biol. 33 (1995) 851–856. Search in Google Scholar

Published Online: 2007-10-19
Published in Print: 2008-3-1

© 2007 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-007-0032-z/html
Scroll to top button