Skip to main content

Advertisement

Log in

Toward a unified solid state theory for pre-earthquake signals

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Many different non-seismic pre-earthquake signals have been reported but there is great uncertainty about their origin, their correlation to each other and to the impending seismic event. The discovery of stress-activated electric currents in rocks provides a possible explanation. Stresses activate electronic charge carriers, namely defect electrons in the oxygen anion sublattice, equivalent to O in a matrix of O2−, also known as positive holes. These charge carriers pre-exist in unstressed rocks in a dormant, electrically inactive state as peroxy links, O3Si-OO-SiO3, where two O are tightly bound together. Under stress dislocations sweep through the mineral grains causing the peroxy links to break. Positive holes, thus generated, flow down stress gradients, constituting an electric current with attendant magnetic field variations and EM emissions. The positive holes accumulate at the surface, creating electric fields, strong enough to field-ionize air molecules. They also recombine leading to a spectroscopically distinct IR emission seen in laboratory experiments and night-time infrared satellite images. In addition positive holes interact with radon in the soil, affecting the radon emanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Araiza-Quijano, M.R., and G. Hernández-del-Valle (1996), Some observations of atmospheric luminosity as a possible earthquake precursor, Geofisica Int. 35, 403–408.

    Google Scholar 

  • Bai, L.-P., J.-G. Du, W. Liu, and W.-G. Zhou (2002), The experimental studies on electrical conductivities and P-wave velocities of anorthosite at high pressure and high temperature, Acta Seism. Sinica 15, 6, 667–676, DOI: 10.1007/s11589-002-0091-1.

    Article  Google Scholar 

  • Balk, M., M. Bose, G. Ertem, D.A. Rogoff, L.J. Rothschild, and F.T. Freund (2009), Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks, Earth Planet. Sci. Lett. 283, 1–4, 87–92, DOI: 10.1016/j.epsl.2009.03.044.

    Article  Google Scholar 

  • Bilitza, D. (2001), International Reference Ionosphere 2000, Radio Sci. 36, 2, 261–275, DOI: 10.1029/2000RS002432.

    Article  Google Scholar 

  • Bishop, J.R. (1981), Piezoelectric effects in quartz-rich rocks, Tectonophysics 77, 3-4, 297–321, DOI: 10.1016/0040-1951(81)90268-7.

    Article  Google Scholar 

  • Bleier, T., C. Dunson, M. Maniscalco, N. Bryant, R. Bambery, and F.T. Freund (2009), Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst. Sci. 9, 585–603.

    Article  Google Scholar 

  • Brace, W.F. (1975), Dilatancy-related electrical resistivity changes in rocks, Pure Appl. Geophys. 113, 1, 207–217, DOI: 10.1007/BF01592911.

    Article  Google Scholar 

  • Brace, W.F., B.W. Paulding, and C. Scholz (1966), Dilatancy in the fracture of crystalline rocks, J. Geophys. Res. 71, 16, 3939–3953.

    Google Scholar 

  • Chen, Y.L., J.Y. Chuo, J.Y. Liu, and S.A. Pulinets (1999), A statistical study of ionospheric precursors of strong earthquakes in the Taiwan area, 24th General Ass. URSI, URSI, 745 pp.

  • Chen, Y.I., J.Y. Liu, Y.B. Tsai, and C.S. Chen (2004), Statistical tests for pre-earthquake ionospheric anomaly, Terr. Atmos. Ocean. Sci. 15, 3, 385–396.

    Google Scholar 

  • Chyi, L.L., C.Y. Chou, F.T. Yang, and C.H. Chen (2002), Automated radon monitoring of seismicity in a fault zone, Geofisica Int. 41, 507–511.

    Google Scholar 

  • Conklin, A.R., Jr. (ed.) (2006), Introduction to Soil Chemistry. Analysis and Instrumentation, Wiley Interscience, New York.

    Google Scholar 

  • Console, R., D. Pantosti, and G. D’Addezio (2002), Probabilistic approach to earthquake prediction, Ann. Geophys. 45, 6, 723–731.

    Google Scholar 

  • Depuev, V., and T. Zelenova (1996), Electron density profile changes in a pre-earthquake period, Adv. Space Res. 18, 6, 115–118, DOI: 10.1016/0273-1177(95)00911-6.

    Article  Google Scholar 

  • Derr, J.S. (1986), Rock mechanics: Luminous phenomena and their relationship to rock fracture, Nature 321, 470–471, DOI: 10.1038/321470a0.

    Article  Google Scholar 

  • Dobrovolsky, I.P., S.I. Zubkov, and V.I. Miachkin (1979), Estimation of the size of earthquake preparation zones, Pure Appl. Geophys. 117, 5, 1025–1044, DOI: 10.1007/BF00876083.

    Article  Google Scholar 

  • Duba, A., and S. Constable (1993), The electrical conductivity of a lherzolite, J. Geophys. Res. 98, B7, 11885–11899, DOI: 10.1029/93JB00995.

    Article  Google Scholar 

  • Dunajecka, M.A., and S.A. Pulinets (2005), Atmospheric and thermal anomalies observed around the time of strong earthquakes in México, Atmósfera 18, 236–247.

    Google Scholar 

  • Finkelstein, D., R.D. Hill, and J.R. Powell (1973), The piezoelectric theory of earthquake lightning, J. Geophys. Res. 78, 6, 992–993, DOI: 10.1029/JC078i006p00992.

    Article  Google Scholar 

  • Freund, F. (1985), Conversion of dissolved “water” into molecular hydrogen and peroxy linkages, J. Non-Cryst. Solids 71, 1–3, 195–202, DOI: 10.1016/0022-3093(85)90288-1.

    Article  Google Scholar 

  • Freund, F. (2002), Charge generation and propagation in igneous rocks, J. Geodyn. 33, 4–5, 543–570, DOI: 10.1016/S0264-3707(02)00015-7.

    Article  Google Scholar 

  • Freund, F. (2003), On the electrical conductivity structure of the stable continental crust, J. Geodyn. 35, 3, 353–388, DOI: 10.1016/S0264-3707(02) 00154-0.

    Article  Google Scholar 

  • Freund, F.T. (2007a), Pre-earthquake signals - Part I: Deviatoric stresses turn rocks into a source of electric currents, Nat. Hazards Earth Syst. Sci. 7, 1–7.

    Article  Google Scholar 

  • Freund, F.T. (2007b), Pre-earthquake signals - Part II: Flow of battery currents in the crust, Nat. Hazards Earth Syst. Sci. 7, 543–548.

    Article  Google Scholar 

  • Freund, F.T. (2009), Stress-activated positive hole charge carriers in rocks and the generation of pre-earthquake signals. In: M. Hayakawa (ed.), Electromagnetic Phenomena Associated with Earthquakes, Research Signpost, New Dehli, 41–96.

    Google Scholar 

  • Freund, F., and D. Sornette (2007), Electro-magnetic earthquake bursts and critical rupture of peroxy bond networks in rocks, Tectonophysics 431, 1–4, 33–47, DOI: 10.1016/j.tecto.2006.05.032.

    Article  Google Scholar 

  • Freund, F., M.M. Freund, and F. Batllo (1993), Critical review of electrical conductivity measurements and charge distribution analysis of magnesium oxide, J. Geophys. Res. 98, B12, 22209–22229, DOI: 10.1029/93JB01327.

    Article  Google Scholar 

  • Freund, F.T., A. Takeuchi, and B.W.S. Lau (2006), Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth 31, 4–9, 389–396, DOI: 10.1016/j.pce.2006.02.027.

    Google Scholar 

  • Freund, F.T., A. Takeuchi, B.W.S. Lau, A. Al-Manaseer, C.C. Fu, N.A. Bryant, and D. Ouzounov (2007), Stimulated infrared emission from rocks: Assessing a stress indicator, eEarth 2, 7–16.

    Article  Google Scholar 

  • Freund, F.T., I.G. Kulahci, G. Cyr, J. Ling, M. Winnick, J. Tregloan-Reed, and M.M. Freund (2009), Air ionization at rock surfaces and pre-earthquake signals, J. Atmos. Sol.-Terr. Phys. 71, 17-18, 1824–1834, DOI: 10.1016/j.jastp.2009.07.013.

    Article  Google Scholar 

  • Galli, I. (1910), Raccolta e classifzione di fenomeni luminosi osservati nei terremoti, Boll. Soc. Sism. Ital. 14, 221–448.

    Google Scholar 

  • Geller, R.J., D.D. Jackson, Y.Y. Kagan, and F. Mulargia (1997), Earthquakes cannot be predicted, Science 275, 5306, 1616–1617, DOI: 10.1126/science.275.5306.1616.

    Article  Google Scholar 

  • Gerber, R.B. (2004), Formation of novel rare-gas molecules in low-temperature matrices, Ann. Rev. Phys. Chem. 55, 55–78, DOI: 10.1146/annurev.physchem.55.091602.094420.

    Google Scholar 

  • Glover, P.W.J., and F.J. Vine (1992), Electrical conductivity of carbonbearing granulite at raised temperatures and pressures, Nature 360, 723–726, DOI: 10.1038/360723a0.

    Article  Google Scholar 

  • Glover, P.W.J., and F.J. Vine (1994), Electrical conductivity of the continental crust, Geophys. Res. Lett. 21, 22, 2357–2360, DOI: 10.1029/94GL01015.

    Article  Google Scholar 

  • Gringel, W., J.M. Rosen, and D.J. Hofmann (1986), Electrical structure from 0 to 30 kilometers. In: The Earth’s Electrical Environment, National Academic Press, Washington, DC, 166–182.

    Google Scholar 

  • Griscom, D.L. (1990), Electron spin resonance, Glass Sci. Technol. 4B, 151–251.

    Google Scholar 

  • Grunewald, E.D., and R.S. Stein (2006), A new 1649–1884 catalog of destructive earthquakes near Tokyo and implications for the long-term seismic process, J. Geophys. Res. 111, B12306, DOI: 10.1029/2005JB004059.

    Article  Google Scholar 

  • Guo, G., and B. Wang (2008), Cloud anomaly before Iran earthquake, Int. J. Remote Sensing 29, 7, 1921–1928, DOI: 10.1080/01431160701373762.

    Article  Google Scholar 

  • Hadley, K. (1975), Azimuthal variation of dilatancy, J. Geophys, Res. 80, 35, 4845–4850, DOI: 10.1029/JB080i035p04845.

    Article  Google Scholar 

  • Hattori, K., K. Wadatsumi, R. Furuya, N. Yada, I. Yamamoto, K. Ninagawa, Y. Ideta, and M. Nishihashi (2008), Variation of radioactive atmospheric ion concentration associated with large earthquakes, AGU Fall Meeting 2008, San Francisco, CA.

  • Hayakawa, M. (2007), VLF/LF radio sounding of ionospheric perturbations associated with earthquakes, Sensors 7, 7, 1141–1158, DOI: 10.3390/s7071141.

    Article  Google Scholar 

  • Hayakawa, M., A.V. Shvets, and S. Maekawa (2005), Subionospheric LF monitoring of ionospheric perturbations prior to the Tokachi-oki earthquake and a possible mechanism of lithosphere-ionosphere coupling, Adv. Polar Upper Atmos. Res. 19, 42–54.

    Google Scholar 

  • Hayakawa, M., S. Pulinets, M. Parrot, and O.A. Molchanov (2006), Recent progress in seismoelectromagnetics and related phenomena, Phys. Chem. Earth 31, 4–9, 129–131, DOI: 10.1016/j.pce.2006.05.001.

    Google Scholar 

  • Hedervari, P., and Z. Noszticzius (1985), Recent results concerning earthquake lights, Ann. Geophys. 3, 6, 705–708.

    Google Scholar 

  • Hollerman, W.A., B Lau, R.J. Moore, C.A. Malespin, N.P. Bergeron, F.T. Freund, and P.J. Wasilewski (2006), Electric currents in granite and gabbro generated by impacts up to 1 km/sec, AGU Fall Meeting 2006, San Francisco.

  • Hoppel, W.A., R.V. Anderson, and J.C. Willett (1986), Atmospheric electricity in the planetary boundary layer. In: The Earth’s Electrical Environment, National Academic Press, Washington, DC, 149–165.

    Google Scholar 

  • İnan, S., C. Seyis, N. Görür, S. Ergintav, R. Saatçilar, M. Bas, K. Cuff, D. Karakas, H. Yakan, S. Akar, A. Belgen, R. Çakmak, L. Kurt, S. Canan, R. Kafarov, and S. Çetin (2003), Radon gas activity: A possible earthquake precursor in the Marmara region (NW Turkey), The 1st Intern. Workshop on “Earthquake Prediction”, ESC, Athens, Greece.

  • İnan, S., T. Akgül, C. Seyis, R. Saatçılar, S. Baykut, S. Ergintav, and M. Baş (2008), Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res. 113, B03401, DOI: 10.01029/02007JB005206.

    Article  Google Scholar 

  • Johnston, M.J.S. (1997), Review of electric and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys. 18, 5, 441–476, DOI: 10.1023/A:1006500408086.

    Article  Google Scholar 

  • Kathrein, H., and F. Freund (1983), Electrical conductivity of magnesium oxide single crystal below 1200 K, J. Phys. Chem. Solids 44, 3, 177–186, DOI: 10.1016/0022-3697(83)90052-5.

    Article  Google Scholar 

  • Kazatchenko, E., M. Markov, and A. Mousatov (2004), Joint modeling of acoustic velocities and electrical conductivity from unified microstructure of rocks, J. Geophys. Res. 109, B01202, DOI: 01210.01029/02003JB002443.

    Article  Google Scholar 

  • King, B.V., and F. Freund (1984), Surface charges and subsurface space-charge distribution in magnesium oxide containing dissolved traces of water, Phys. Rev. B 29, 5814–5824, DOI: 10.1103/PhysRevB.29.5814.

    Article  Google Scholar 

  • King, C.-Y. (1980), Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes, J. Geophys. Res. 85, B6, 3065–3078, DOI: 10.1029/JB085iB06p03065.

    Article  Google Scholar 

  • King, C.-Y. (1983), Earthquake prediction: Electromagnetic emissions before earthquakes, Nature 301, 377, DOI: 10.1038/301377a0.

    Article  Google Scholar 

  • Kolvankar, V.G. (2001), Earthquake sequence of 1991 from Valsad region, Guajrat, Report BARC-2001/E/006, Bhabha Atomic Research Centre, Seismology Div., Mumbai, India.

    Google Scholar 

  • Korneev, V. (2010), Seismicity precursors for active monitoring of earthquakes. In: J. Kasahara, V. Korneev, and M. Zhdanov (eds.), Active Geophysical Monitoring, Vol. 40, Ser. Handbook of Geophysical Exploration: Seismic Exploration, 5–28.

  • Li, W.-K., G.-D. Zhou, and T.C.W. Mak (2008), Advanced Structural Inorganic Chemistry, International Union of Crystallography, Oxford University Press, 688 pp.

  • Liperovsky, V.A., O.A. Pokhotelov, E.V. Liperovskaya, M. Parrot, C.-V. Meister, and O.A. Alimov (2000), Modification of sporadic E-layers caused by seismic activity, Surv. Geophys. 21, 5–6, 449–486, DOI: 10.1023/A:1006711603561.

    Article  Google Scholar 

  • Liu, J.Y., Y. Chuo, S. Shan, Y. Tsai, Y. Chen, S. Pulinets, and S.B. Yu (2004), Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements, Ann. Geophys. 22, 1585–1593.

    Article  Google Scholar 

  • Liu, J.Y., Y.I. Chen, Y.J. Chuo, and C.S. Chen (2006), A statistical investigation of preearthquake ionospheric anomaly, J. Geophys. Res. 111, A05304, DOI: 10.1029/2005JA011333.

    Article  Google Scholar 

  • Lockner, D.A., M.J.S. Johnston, and J.D. Byerlee (1983), A mechanism to explain the generation of earthquake lights, Nature 302, 28–33, DOI: 10.1038/302028a0.

    Article  Google Scholar 

  • Losseva, T.V., and I.V. Nemchinov (2005), Earthquake lights and rupture processes, Nat. Hazard Earth Syst. Sci. 5, 649–656.

    Article  Google Scholar 

  • Lu, D. (1988), Impending Earthquake Prediction, Jinangsu Science and Publishing House, Nanjing, China.

    Google Scholar 

  • Mack, K. (1912), Das süddeutsche Erdbeben vom 16. November 1911, Abschnitt VII: Lichterscheinungen, Würtembergische Jahrbücher für Statistik and Landeskunde, Stuttgart.

    Google Scholar 

  • Maekawa, S., T. Horie, T. Yamauchi, T. Sawaya, M. Ishikawa, M. Hayakawa, and H. Sasaki (2006), A statistical study on the effect of earthquakes on the ionosphere, based ont he subionospheric LF propagation data in Japan, Ann. Geophys. 24, 2219–2225.

    Article  Google Scholar 

  • Manna, S.S., and B.K. Chakrabarti (1987), Dielectric breakdown in the presence of random conductors, Phys. Rev. B 36, 4078–4081, DOI: 10.1103/PhysRevB.36.4078.

    Article  Google Scholar 

  • Mulargia, F., and R.J. Geller (eds.) (2003), Earthquake Science and Seismic Risk Reduction, NATO Science Series, Kluwer Academic, Dordrecht.

    Google Scholar 

  • Nagarajaa, K., B.S.N. Prasad, M.S. Madhava, M.S. Chandrashekara, L. Paramesh, J. Sannappa, S.D. Pawar, P. Murugavel, and A.K. Kamra (2003), Radon and its short-lived progeny: Variations near the ground, Radiat. Meas. 36, 1–6, 413-417, DOI: 10.1016/S1350-4487(03)00162-8.

    Article  Google Scholar 

  • Nur, A. (1974), Matsushiro, Japan, earthquake swarm: Confirmation of the dilatancy-fluid diffusion model, Geology 2, 5, 217–221, DOI: 10.1130/0091-7613(1974)2〈217:MJESCO〉2.0.CO;2.

    Article  Google Scholar 

  • Ogawa, T., and H. Utada (2000), Coseismic piezoelectric effects due to a dislocation: 1. An analytic far and early-time field solution in a homogeneous whole space, Phys. Earth Planet. Int. 121, 3–4, 273–288, DOI: 10.1016/S0031-9201(00)00177-1.

    Article  Google Scholar 

  • Omori, Y., H. Nagahama, Y. Kawada, Y. Yasuoka, T. Ishikawa, S. Tokonami, and M. Shinogi (2009), Preseismic alteration of atmospheric electrical conditions due to anomalous radon emanation, Phys. Chem. Earth 34, 6–7, 435–440, DOI: 10.1016/j.pce.2008.08.001.

    Google Scholar 

  • Ondoh, T. (2003), Anomalous sporadic-E layers observed before M 7.2 Hyogo-ken Nanbu earthquake; Terrestrial gas emanation model, Adv. Polar Upper Atmos. Res. 17, 96–108.

    Google Scholar 

  • Ouellet, M. (1990), Earthquake lights and seismicity, Nature 348, 492, DOI: 10.1038/348492a0.

    Article  Google Scholar 

  • Ouzounov, D., and F. Freund (2004), Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data, Adv. Space Res. 33, 3, 268–273, DOI: 10.1016/S0273-1177(03)00486-1.

    Article  Google Scholar 

  • Ouzounov, D., N. Bryant, T. Logan, S. Pulinets, and P. Taylor (2006), Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003, Phys. Chem. Earth 31, 4-9, 154–163, DOI: 10.1016/j.pce.2006.02.036.

    Google Scholar 

  • Oyama, K.I., Y. Kakinami, J.Y. Liu, M. Kamogawa, and T. Kodama (2008), Reduction of electron temperature in low-latitude ionosphere at 600 km before and after large earthquakes, J. Geophys. Res. 113, A11317, DOI: 10.1029/2008JA013367.

    Article  Google Scholar 

  • Parkhomenko, E.I., and A.T. Bondarenko (1986), Electrical conductivity of rocks at high pressures and temperatures, NASA, Washington, D.C., 292 pp.

    Google Scholar 

  • Patra, H.P., and S.K. Nath (1999), Schumberger Geolectric Sounding in Ground Water (Principles, Interpretation and Application), Oxford and IBH Publishing Co., New Delhi.

    Google Scholar 

  • Pulinets, S.A. (2007), Natural radioactivity, earthquakes, and the ionosphere, EOS 88, 20, 217–218, DOI: 10.1029/2007EO200001.

    Article  Google Scholar 

  • Pulinets, S.A. (2009), Physical mechanism of the vertical electric field generation over active tectonic faults, Adv. Space Res. 44, 6, 767–773, DOI: 10.1016/j.asr.2009.04.038.

    Article  Google Scholar 

  • Pulinets, S.A., A. Leyva Contreras, G. Bisiacchi-Giraldi, and L. Ciraolo (2005), Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of 21 January 2003, Geofisica Int. 44, 4, 369–377.

    Google Scholar 

  • Pulinets, S.A., D. Ouzounov, L. Ciraolo, R. Singh, G. Cervone, A. Leyva, M. Dunajecka, A.V. Karelin, K.A. Boyarchuk, and A. Kotsarenko (2006), Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003, Ann. Geophys. 24, 835–849.

    Article  Google Scholar 

  • Qian, F., Y. Zhao, M. Yu, Z. Wang, X. Liu, and S. Chang (1983), Geoelectric resistivity anomalies before earthquakes, Scientia Sinica B 26, 326–336.

    Google Scholar 

  • Qian, F.Y., B.R. Zhao, W. Qian, J. Zhao, S.G. He, H.K. Zhang, S.Y. Li, S.K. Li, G.L. Yan, C.M. Wang, Z.K. Sun, D.N. Zhang, J. Lu, P. Zhang, G.J. Yang, J.L. Sun, C.S. Guo, Y.X. Tang, J.M. Xu, K.T. Xia, H. Ju, B.H. Yin, M. Li, D.S. Yang, W.L. Qi, T.M. He, H.P. Guan, and Y.L. Zhao (2009), Impending HRT wave precursors to the Wenchuan Ms 8.0 earthquake and methods of earthquake impending prediction by using HRT wave, Science in China, Series D: Earth Sciences 52, 10, 1572–1584, DOI: 10.1007/s11430-009-0124-x.

    Article  Google Scholar 

  • Qiang, Z., C. Dian, L. Li, M. Xu, F. Ge, T. Liu, Y. Zhao, and M. Guo (1999), Satellitic thermal infrared brightness temperature anomaly image - shortterm and impending earthquake precursors, Science in China, Series D: Earth Sciences 42, 3, 313–324, DOI: 10.1007/BF02878968.

    Article  Google Scholar 

  • Qiang, Z.-J., X.-D. Xu, and C.-D. Dian (1991), Thermal infrared anomaly - precursor of impending earthquakes, Chinese Sci. Bull. 36, 319–323.

    Google Scholar 

  • Ricci, D., G. Pacchioni, M.A. Szymanski, A.L. Shluger, and A.M. Stoneham (2001), Modeling disorder in amorphous silica with embedded clusters: The peroxy bridge defect center, Phys. Rev. B 64, 22, 224101–224108, DOI: 10.1103/PhysRevB.64.224104.

    Google Scholar 

  • Rishbeth, H. (2006), F-region links with the lower atmosphere?, J. Atmos. Sol.-Terr. Phys. 68, 3–5, 469–478, DOI: 1016/j.jastp.2005.03.017.

    Article  Google Scholar 

  • Rishbeth, H. (2007), Do Earthquake Precursors Really Exist?, Eos Trans. AGU 88, 29, DOI: 10.1029/2007EO290008.

    Google Scholar 

  • Rycroft, M.J., R.G. Harrison, K.A. Nicoll, and E.A. Mareev (2008), An overview of Earth’s Global electric circuit and atmospheric conductivity, Space Science Rev. 137, 1–4, 83–105 DOI: 10.1007/s11214-008-9368-6.

    Article  Google Scholar 

  • Saraf, A.K., V. Rawat, P. Banerjee, S. Choudhury, S.K. Panda, S. Dasgupta, and J.D. Das (2008), Satellite detection of earthquake thermal infrared precursors in Iran, Nat. Hazards 47, 1, 119–135, DOI: 10.1007/s11069-007-9201-7.

    Article  Google Scholar 

  • Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge Univ. Press, Cambridge, 471 pp.

    Google Scholar 

  • Shankland, T.J., A.G. Duba, E.A. Mathez, and C.L. Peach (1997), Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks, J. Geophys. Res. 102, B7, 14,741–14,750.

    Google Scholar 

  • Shluger, A.L., E.N. Heifets, J.D. Gale, and C.R.A. Catlow (1992), Theoretical simulation of localized holes in MgO, J. Phys.: Condens. Matter 4, 5711–5722, DOI: 10.1088/0953-8984/4/26/005.

    Article  Google Scholar 

  • Singh, B. (2008), Electromagnetic Phenomenon Related to Earthquakes and Volcanoes, Narosa Publ. House, New Delhi.

    Google Scholar 

  • Sobolev, G.A. (2004), Microseismic variations prior to a strong earthquake, Fiz. Zemli 6, 3–13 and also Izvestiya, Physics Solid Earth 40, 455–464 (2004).

    Google Scholar 

  • Sobolev, G.A., and A.A. Lyubushin (2006), Microseismic impulses as earthquake precursors, Izvestiya, Physics Solid Earth 42, 9, 721–733, DOI: 10.1134/S1069351306090023.

    Article  Google Scholar 

  • Sobolev, G.A., and A.A. Lyubushin (2007), Microseismic anomalies before the Sumatra earthquake of December 26, 2004, Izvestiya, Physics Solid Earth 43, 5, 341–353, DOI: 10.1134/S1069351307050011.

    Article  Google Scholar 

  • Sobolev, G.A., A.A. Lyubushin, and N.A. Zakrzhevskaya (2005), Synchronization of microseismic variations within a minute range of periods, Izvestiya, Physics Solid Earth 41, 8, 599–621.

    Google Scholar 

  • Sorokin, V.M., V.M. Chmyrev, and A.K. Yaschenko (2006a), Possible DC electric field in the ionosphere related to seismicity, Adv. Space Res. 37, 4, 666–670, DOI: 10.1016/j.asr.2005.05.066.

    Article  Google Scholar 

  • Sorokin, V.M., A.K. Yaschenko, and M. Hayakawa (2006b), Formation mechanism of the lower-ionospheric disturbances by the atmosphere electric current over a seismic region, J. Atmos. Sol.-Terr. Phys. 68, 11, 1260–1268, DOI: 10.1016/j.jastp.2006.03.005.

    Article  Google Scholar 

  • St-Laurent, F. (1991), Corona effect and electro-atmospheric discharges: Possible luminous effect following earthquakes?, J. Meteorol. 16, 238–241.

    Google Scholar 

  • St-Laurent, F. (2000), The Saguenay, Québec, earthquake lights of November 1988–January 1989, Seismol. Res. Lett. 71, 160–174.

    Article  Google Scholar 

  • St-Laurent, F., J.S. Derr, and F.T. Freund (2006), Earthquake lights and the stressactivation of positive hole charge carriers in rocks, Phys. Chem. Earth 31, 5–9, 305–312, DOI: 10.1016/j.pce.2006.02.003.

    Google Scholar 

  • Stewart, T.R. (2000), Uncertainty, judgment, and error in prediction. In: D. Sarewitz, R.A. Pielke, Jr., and R. Byerly, Jr. (eds.), Prediction: Science, Decision Making, and the Future of Nature, Island Press, Washington, DC, 41–/57.

    Google Scholar 

  • Sugawara, H., and Y. Sakai (2003), Electron acceleration in gas by impulse electric field and its application to selective promotion of an electron-molecule reaction, J. Phys. D: Appl. Phys. 36, 1994–2000, DOI: 10.1088/0022-3727/36/16/311.

    Article  Google Scholar 

  • Takeuchi, A., B.W.S. Lau, and F.T. Freund (2006), Current and surface potential induced by stress-activated positive holes in igneous rocks, Phys. Chem. Earth 31, 4-9, 240–247.

    Google Scholar 

  • Terada, T. (1931), On luminous phenomena accompanying earthquakes, Bull. Earthq. Res. Inst. Tokyo Univ. 9, 225–255.

    Google Scholar 

  • Trakhtengerts, V.Y., D.I. Iudin, A.V. Kulchitsky, and M. Hayakawa, (2003), Electron acceleration by a stochastic electric field in the atmospheric layer, Phys. Plasmas 10, 3290, DOI: 10.1063/1.1584679.

    Article  Google Scholar 

  • Tramutoli, V. (1998), Robust AVHRR Techniques (RAT) for environmental monitoring: Theory and applications, EUROPTO Conference on Remote Sensing for Geology, Land Management, and Cultural Heritage III, Barcelona, Spain, September 1998, SPIE 3496.

  • Tramutoli, V., V. Cuomo, C. Filizzola, N. Pergola, and C. Pietrapertosa (2005), Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (İzmit) earthquake, August 17, 1999, Remote Sens. Environ. 96, 3–4, 409–426, DOI: 10.1016/j.rse.2005.04.006.

    Article  Google Scholar 

  • Trigunait, A., M. Parrot, S. Pulinets, and F. Li (2004), Variations of the ionospheric electron density during the Bhuj seismic event, Ann. Geophys. 22, 4123–4131.

    Article  Google Scholar 

  • Tronin, A.A. (ed.) (1999), Satellite Thermal Survey Application for Earthquake Prediction, Terra Scientific Publ., Tokyo, 717–746.

    Google Scholar 

  • Tronin, A.A. (2000), Thermal IR satellite sensor data application for earthquake research in China, Int. J. Remote Sens. 21, 16, 3169–3177, DOI: 10.1080/01431160050145054.

    Article  Google Scholar 

  • Tronin, A.A. (2002), Atmosphere-lithosphere coupling: Thermal anomalies on the Earth surface in seismic process. In: M. Hayakawa, and O.A. Molchanov (eds.), Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Terra Scientific Publ., Tokyo, 173-7173-176.

    Google Scholar 

  • Tronin, A.A., O.A. Molchanov, and P.F. Biagi (2004), Thermal anomalies and well observations in Kamchatka, Int. J. Remote Sens. 25, 13, 2649–2655, DOI: 10.1080/01431160410001665812.

    Article  Google Scholar 

  • Tsukuda, T. (1997), Sizes and some features of luminous sources associated with the 1995 Hyogo-ken Nanbu earthquake, J. Phys. Earth 45, 73–82.

    Google Scholar 

  • Tsvetkova, T., M. Monnin, I. Nevinsky, and V. Perelygin (2001), Research on variation of radon and gamma-background as a prediction of earthquakes in the Caucasus, Radiat. Meas. 33, 1, 1–5, DOI: 10.1016/S1350-4487(00)00110-4.

    Article  Google Scholar 

  • Tuck, G.J., F.D. Stacey, and J. Starkey (1977), A search for the piezoelectric effect in quartz-bearing rock, Tectonophysics 39, 4, 7–11, DOI: 10.1016/0040-1951(77)90148-2.

    Article  Google Scholar 

  • Vinet, P., J. Ferrante, J.H. Rose, and J.R. Smith (1987), Compressibility of solids, J. Geophys. Res. 92, B9, 9319–9325, DOI: 10.1029/JB092iB09p09319.

    Article  Google Scholar 

  • Walder, J., and A. Nur (1984), Porosity reduction and crustal pore pressure development, J. Geophys. Res. 89, B13, 11,539–511,548.

    Google Scholar 

  • Wasa, Y., and K. Wadatsumi (2003), Functional strengthening and employment of Macroscopic Anomaly System by e-PISCO ASP, J. Jpn. Soc. Inform. Knowledge 13, 2, 41–47 (in Japanese)

    Google Scholar 

  • Wendebourg, J., and J.W.D. Ulmer (1992), Modeling compaction and isostatic compensation in SEDSIM for basin analysis and subsurface fluid flow. In: Computer Graphics in Geology, Springer, Berlin/Heidelberg, 41, 143–153, DOI: 10.1007/BFb0117780.

    Chapter  Google Scholar 

  • Willett, J.E. (1987), Gas Chromatography, John Wiley & Sons, London.

    Google Scholar 

  • Xu, X.D., Z.J. Qiang, and C.G. Dian (1991), Abnormal increase of satellite thermal infrared and ground surface temperature of impending earthquakes, Chinese Sci. Bull. 36, 4, 291–294.

    Google Scholar 

  • Yasuoka, Y., Y. Kawada, H. Nagahama, Y. Omori, T. Ishikawa, S. Tokonami, and M. Shinogi (2009), Preseismic changes in atmospheric radon concentration and crustal strain, Phys. Chem. Earth 34, 6–7, 431–434, DOI: 10.1016/j.pce.2008.06.005.

    Google Scholar 

  • Zakharenkova, I.E., I.I. Shagimuratov, and A. Krankowski (2007), Features of the ionosphere behavior before the Kythira 2006 earthquake, Acta Geophys. 55, 4, 524–534, DOI: 10.2478/s11600-007-0031-5.

    Article  Google Scholar 

  • Zhao, Y., and F. Qian (1994), Geoelectric precursors to strong earthquakes in China, Tectonophysics , 1–2, 99–113, DOI: 10.1016/0040-1951(94)90223-2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedemann Freund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freund, F. Toward a unified solid state theory for pre-earthquake signals. Acta Geophys. 58, 719–766 (2010). https://doi.org/10.2478/s11600-009-0066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-009-0066-x

Key words

Navigation