Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 17, 2014

Production of hairy root cultures of lettuce (Lactuca sativa L.)

  • Tadić Vojin EMAIL logo , Milošević Snežana , Cingel Aleksandar , Petrić Marija , Trifunović Milana , Antonić Dragana , Tadić Jovan and Subotić Angelina
From the journal Open Life Sciences

Abstract

Hairy root cultures of lettuce (Lactuca sativa L.) were obtained by inoculation of cotyledonary leaves of in vitro lettuce seedlings (cvs. Nansen and Ljubljanska ledenka) with Agrobacterium rhizogenes A4M70GUS. Approximately in 96.7% cvs. Nansen and in 91.2% Ljubljanska ledenka inoculated explants produced hairy root when they were incubated on Murashige and Skoog (MS) half-strength medium without plant growth regulators. A total of 54% of all hairy root cultures expressed GUS activity. Every hairy root represented an independent transformation event. Line Ljubljanska ledenka 18 showed the highest biomass (5.5 times the biomass of control root). A PCR analysis of the genomic DNA confirmed the presence of marker and target genes in 15 hairy roots examined.

[1] Curtis I., Genetic transformation-Agrobacterium, In: Davey M. R. and Anthony P. (Eds.) Plant Cell Culture, Essential Methods, 199–215, Wiley-Blackwell, 2010 10.1002/9780470686522.ch11Search in Google Scholar

[2] FAO (2006): http://faostat.fao.org/faostat/sevlet/. Cited 20 April 2006. Search in Google Scholar

[3] USDA (2005) Vegetables. Annual Summary 01.27.06. National Agricultural Statistics Service. http://usda.mannlib.cornell.edu/reports/nassr/fruit/pvgbban/. Cited 2006. Search in Google Scholar

[4] Veena V., Taylor G.C., Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell. Dev. Biol-Pl., 2007, 43, 383–403 10.1007/s11627-007-9096-8Search in Google Scholar

[5] Zdravković-Korać S., Muhovski Z., Druart P., Ćalić D., Radojević Lj., Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep., 2004, 22, 698–704 http://dx.doi.org/10.1007/s00299-004-0756-410.1007/s00299-004-0756-4Search in Google Scholar

[6] Giri A., Narasu M.L. (2000) Transgenic hairy roots. Recent trends and applications. Biotechnol. Adv., 2000, 18, 1–22 http://dx.doi.org/10.1016/S0734-9750(99)00016-610.1016/S0734-9750(99)00016-6Search in Google Scholar

[7] Guillon S., Trémouillaux-Guiller J., Pati P.K., Rideau M., Gantet P., Hairy root research: recent scenario and exciting prospects. Curr. Opin. Plant Biol., 2006, 9, 341–346 http://dx.doi.org/10.1016/j.pbi.2006.03.00810.1016/j.pbi.2006.03.008Search in Google Scholar PubMed

[8] Ono N.N., Tian L., The multiplicity of hairy root cultures: Prolific possibilities. Plant Sci., 2011, 180, 439–466 http://dx.doi.org/10.1016/j.plantsci.2010.11.01210.1016/j.plantsci.2010.11.012Search in Google Scholar PubMed

[9] Shih S.M.-H., Doran P.M., In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operations. J. Biotechnol., 2009, 143, 198–206 http://dx.doi.org/10.1016/j.jbiotec.2009.07.00710.1016/j.jbiotec.2009.07.007Search in Google Scholar PubMed

[10] Coniglio M., S., Busto V. D., González P. S., Medina M. I., Milrad S., Agostini E., Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions. Chemosphere, 2008, 72, 1035–1042 http://dx.doi.org/10.1016/j.chemosphere.2008.04.00310.1016/j.chemosphere.2008.04.003Search in Google Scholar PubMed

[11] Doran P.M., Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol. Bioeng., 2009, 103, 60–76 http://dx.doi.org/10.1002/bit.2228010.1002/bit.22280Search in Google Scholar PubMed

[12] González P. S., Agostini E., Milrad S. R., Comparison of the removal of 2,4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effect of polyethylene glycol. Chemosphere., 2008, 70, 982–989 http://dx.doi.org/10.1016/j.chemosphere.2007.08.02510.1016/j.chemosphere.2007.08.025Search in Google Scholar PubMed

[13] González P. S., Maglione G. A., Giordana M., Paisio C. E., Talano M. A., Agostini E., Evaluation of phenol detoxification by Brassica napus hairy roots, using Allium cepa test. Environ. Sci. Pollut. Res. 2012, 19, 482–491 http://dx.doi.org/10.1007/s11356-011-0581-610.1007/s11356-011-0581-6Search in Google Scholar PubMed

[14] Suresh B., Ravishankar G.A., Phytoremediation — a novel and promising approach for environmental clean-up. Crit. Rev. Biotechnol., 2004, 24, 97–124 http://dx.doi.org/10.1080/0738855049049362710.1080/07388550490493627Search in Google Scholar PubMed

[15] Sosa Alderete L.G., Ibáñez S.G., Agostini E., Medina M.I., Phytoremediation of Phenol at pilot scale by tobacco hairy roots. Int. J. Environ. Sci., 2012, 3, 398–407 Search in Google Scholar

[16] Suza W., Harris R.S., Lorence A., Hairy roots: from high-value metabolite production to phytoremediation. Electron J. Int. Biosci., 2008, 3, 57–65 Search in Google Scholar

[17] Lim W., Park J., Park S., Re-evaluation of the effects of growth regulators on callus induction and shoot regeneration in Agrobacterium-mediated transformation of lettuce. Acta Physiol. Plant., 2011, 33, 1631–1637 10.1007/s11738-010-0699-zSearch in Google Scholar

[18] Pileggi M., Pereira A. A. M., Silva J. dos S., Pileggi S. A. V., Verma D. P. S., An Improved Method for Transformation of Lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance. Braz. Arch. Biol. Techn., 2001, 44, 191–196 http://dx.doi.org/10.1590/S1516-8913200100020001310.1590/S1516-89132001000200013Search in Google Scholar

[19] Ahmed B. M., Akhter M. S., Hossain M., Islam R., Choudhury T. A., Hannan M. M., Razvy M. A., Ahmad I., An efficient Agrobacterium-mediated genetic transformation method of lettuce (Lactuca sativa L.) with an aphidicidal gene, iPta (Pinellia ternata Agglutinin). Middle East J. Sci. Res., 2007, 2, 155–160 Search in Google Scholar

[20] Matvieieva N. A., Vasylenko M. Y., Shakhovsky A. M., Kuchuk N. V., Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) with genes cording bacterial antigens from Mycobacterium tuberculosis. Cytol Genet., 2009, 43, 94–98 http://dx.doi.org/10.3103/S009545270902004210.3103/S0095452709020042Search in Google Scholar

[21] Van Larebeke N., Genetello C.H., Hernalsteens J.P., De Picker A., Zaenen I., Messens, E., Van Montagu M., Shell J., Transfer of Ti plasmid between Agrobacterium strains by mobilization with the conjugative plasmid RP4. Mol. Genet., 1977, 152, 1119–1124 10.1007/BF00268807Search in Google Scholar

[22] Jefferson R. A., Kavanagh T. A., Bevan M. W., GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 1987, 6, 3901–3907 10.1002/j.1460-2075.1987.tb02730.xSearch in Google Scholar PubMed PubMed Central

[23] Zhou X., Guangcheng C., Rufa L., Yongru S., Wenbin L., A rapid and efficient DNA extraction method of genus Fagopyrum for RAPD analysis. Proc IPBA, Rougla, 171–175, 1994. Search in Google Scholar

[24] Sretenović-Rajčić T., Ninković S., Miljuš-Đukić J., Vinterhalter B., Vinterhalter D., Agrobacterium rhizogenes-mediated transformation of Brassica oleracea var. sabauda and B. oleracea var. capitata. Bio Plantarum., 2006, 50, 525–530 http://dx.doi.org/10.1007/s10535-006-0083-410.1007/s10535-006-0083-4Search in Google Scholar

[25] Milošević S., Subotić A., Cingel A. Jevremović S. and Ninković S. Efficient genetic transformation of Impatiens hawkerii Bull. (Balsamiaceae) using Agrobacterium rhizogenes. Arch. Biol. Sci., 2009, 61, 467–474 10.2298/ABS0903467MSearch in Google Scholar

[26] Sinkar V.P., Pythoud F., White F.F., Nester W.E. and Gordon P.M., rol A locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants. Gene. Dev., 1988, 2, 688–697 http://dx.doi.org/10.1101/gad.2.6.68810.1101/gad.2.6.688Search in Google Scholar PubMed

[27] Christey M.C., Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev.-Pl., 2001, 37, 687–700 10.1007/s11627-001-0120-0Search in Google Scholar

[28] Yazaki K., Tanaka S., Matsuoka H., Sato F., Stable transformation of Lithospermum erythrorhizon by Agrobacterium rhizogenes and shikonin production of the transformants. Plant Cell Rep., 1998, 18, 214–219 http://dx.doi.org/10.1007/s00299005055910.1007/s002990050559Search in Google Scholar

[29] Krolicka A., Stanisyewska I., Bielawski K., Malinski E., Szafranek J., Lojkowska E., Establishment of hairy root cultures of Ammi majus. Plant Sci., 2001, 160, 259–264 http://dx.doi.org/10.1016/S0168-9452(00)00381-210.1016/S0168-9452(00)00381-2Search in Google Scholar

[30] Azlan G.J., Marziah M., Radzali M., Johari R., Establishment of Physalis minima hairy roots culture for the production of physalins. Plant Cell Tiss. Org., 2002, 69, 271–278 http://dx.doi.org/10.1023/A:101566211887710.1023/A:1015662118877Search in Google Scholar

[31] Momčilović I., Grubišić D., Kojić M., Nešković M., Agrobacterium rhizogenes-mediated transformation of four Gentiana species. Plant Cell Tiss. Org. Cult., 1997, 50, 1–6 http://dx.doi.org/10.1023/A:100588080223110.1023/A:1005880802231Search in Google Scholar

[32] Gelvin S. B., Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant. Phys., 2000, 51, 223–256 http://dx.doi.org/10.1146/annurev.arplant.51.1.22310.1146/annurev.arplant.51.1.223Search in Google Scholar

[33] Bulgakov V. P., Functions of rol genes in plant secondary metabolism, Biotechol. Adv., 2008, 26, 318–324 http://dx.doi.org/10.1016/j.biotechadv.2008.03.00110.1016/j.biotechadv.2008.03.001Search in Google Scholar

[34] Binns A.N., Costantino P., The Agrobacterium oncogenes. In: Spaink H., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae, 251–266 Kluwer Press, Holland, Dordrecht, 1998 http://dx.doi.org/10.1007/978-94-011-5060-6_1210.1007/978-94-011-5060-6_12Search in Google Scholar

[35] Bonhomme V., Laurain-Mattar D., Lacoux J., Fliniaux M.A., Jacquin-Dubreuil A., Tropane alkaloid production by hairy roots of Atropa belladona obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. J. Biotech., 2000, 81, 151–158 http://dx.doi.org/10.1016/S0168-1656(00)00287-X10.1016/S0168-1656(00)00287-XSearch in Google Scholar

[36] Tanaka N., Fujikawa Y., Aly M.A.M., Saneoka H., Fujit K., Yamashita I., Proliferation and rol gene expression in hairy root lines of Egyptian clover. Plant Cell Tiss. Org. Cult., 2001, 66, 175–182 http://dx.doi.org/10.1023/A:101064812487210.1023/A:1010648124872Search in Google Scholar

[37] Lin H.W., Kwok K.H., Doran P.M., Development of Linum flavum hairy root cultures for production of coniferin. Biotech. Let., 2003, 25, 521–525 http://dx.doi.org/10.1023/A:102282160028310.1023/A:1022821600283Search in Google Scholar

[38] Tiwari R.K., Trivedi M., Guang Z.C., Guo G.Q., Zheng, G.C., Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavoponoids in hairy roots. Biol. Plantarum., 2008, 52, 26–35 http://dx.doi.org/10.1007/s10535-008-0004-910.1007/s10535-008-0004-9Search in Google Scholar

[39] Stojakowska A., Malarz J., Szewczyk A., Kisiel W., Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol. Plant., 2012, 34, 291–298 10.1007/s11738-011-0827-4Search in Google Scholar

[40] Hu C.Y., Chee P.P., Chesney R.H., Zhou J.H., Miller P.D., O’Brien W.T., Intrinsic GUS-like activities in seed plants. Plant Cell Rep., 1990, 9, 1–5 http://dx.doi.org/10.1007/BF0023212310.1007/BF00232123Search in Google Scholar

[41] Hodal L., Bochardt A., Nielsen J., Mattsson O., Okkels F., Detection, expression and specific elimination of endogenous β-glucuronidase activity in transgenic and non-transgenic plants. Plant Sci., 1992, 87, 115–122 http://dx.doi.org/10.1016/0168-9452(92)90199-V10.1016/0168-9452(92)90199-VSearch in Google Scholar

[42] Doran P.M., Properties and applications of hairy — root cultures. In: Okasman-Caldenty K.M. and Barz W.H. (Eds.) Plant Biotechnology and transgenic plants, 143–162, New York, Mercel Dekker Inc, 2002 10.1201/9780203910849.ch7Search in Google Scholar

[43] Hansen G., Wright M.S., Recent advances in the transformation of plants. Trends Plant Sci., 1999, 4, 226–231 http://dx.doi.org/10.1016/S1360-1385(99)01412-010.1016/S1360-1385(99)01412-0Search in Google Scholar

[44] Shen W. H., Petit A., Guern J., Tempe J., Hairy roots are more sensitive to auxin than normal roots. PNSA., 1988, 85, 3417–3421 http://dx.doi.org/10.1073/pnas.85.10.341710.1073/pnas.85.10.3417Search in Google Scholar PubMed PubMed Central

[45] Vinterhalter B., Zdravković-Korać S., Ninković S., Mitić N., Janković T., Miljuš-Đikuić J., Vinterhalter D., Variability in shoot cultures regenerated from hairy roots of Gentiana punctate. Biol. Plantarum., 2011, 55, 414–422 http://dx.doi.org/10.1007/s10535-011-0105-810.1007/s10535-011-0105-8Search in Google Scholar

[46] Ninković S., Djordjević T., Vinterhalter B., Uzelac B., Cingel A., Savić J., Radović S. Embryonic responses of Beta vulgaris L. Callus induced from transgenic hairy roots. Plant Cell Tiss Organ Cult., 2010, 103, 81–91 http://dx.doi.org/10.1007/s11240-010-9757-x10.1007/s11240-010-9757-xSearch in Google Scholar

[47] Santos de Araujo B., Dec J., Bollag J.M., Pletsch M., Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere., 2006, 63, 642–651 http://dx.doi.org/10.1016/j.chemosphere.2005.08.00510.1016/j.chemosphere.2005.08.005Search in Google Scholar PubMed

[48] Bjelović A., Rosić N., Miljuš-Đukić J., Ninković S., Grubušić D., In vitro regeneration and transformation of Blackstonia perfoliata. Biol. Plantarum, 2004, 48, 333–338 http://dx.doi.org/10.1023/B:BIOP.0000041083.41294.3110.1023/B:BIOP.0000041083.41294.31Search in Google Scholar

[49] Wu J., Wang Y., Zhang L.-X., Zhang X.-Z., Kong J., Lu J., Han Z.-H., High-efficiency regeneration of Agrobacterium rhizogenes-induced hairy root in apple rootstock Malus baccata (L.) Borkh. Plant Cell Tiss. Organ Cult., 2012, 111, 183–189 http://dx.doi.org/10.1007/s11240-012-0182-110.1007/s11240-012-0182-1Search in Google Scholar

Published Online: 2014-8-17
Published in Print: 2014-12-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-014-0351-9/html
Scroll to top button