Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 7, 2014

QTL mapping for germination of seeds obtained from previous wheat generation under drought

  • Ilona Czyczyło-Mysza EMAIL logo , Izabela Marcińska , Edyta Skrzypek , Katarzyna Cyganek , Katarzyna Juzoń and Małgorzata Karbarz
From the journal Open Life Sciences

Abstract

The QTLs controlling germination and early seedling growth were mapped using seeds acquired from mapping population and parental lines of Chinese Spring and SQ1 grown under water-limited conditions, severe drought (SDr) and well-watered plants (C). Germination ability was determined by performing a standard germination test based on the quantification of the germination percentage (GP24) of seeds incubated for 24 h at 25°C in the dark. Early seedling growth was evaluated on the basis of the length of the root and leaf at the 6th day of the experiment. QTLs were identified by composite interval mapping method using Windows QTLCartographer 2.5 software. For the traits studied, a total of thirty eight additive QTLs were identified. Seventeen QTLs were mapped in C on chromosomes: 1A, 2A, 7A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 2D, 3D, 4D and 6D, while twenty one QTLs were identified in SDr on chromosomes: 1A, 2A, 5A, 2B, 3B, 4B, 5B, 6B, 7B, 3D, 5D and 6D. Most of the QTLs for GP and early leaf growth parameters were clustered on chromosome 4B (associated with the Rht-B1 marker) both in C and SDr plants. The results indicate the complex and polygenic nature of germination.

[1] Austin R.B., Prospect for improving crop production in stressful environments, In: Jones H.G., Flowers T.J., Jones M.B. (Eds), Plants under stress. Biochemistry, physiology and ecology and their application to plant improvement, Cambridge University Press, Cambridge, 1989 10.1017/CBO9780511661587.014Search in Google Scholar

[2] Zagdańska B., Mechanisms of grains resistance to soil drought: energy metabolism of spring wheat in the acquisition of resistance [Mechanizmy odporności zbóż na suszę glebową: metabolizm energetyczny pszenicy jarej w nabywaniu odporności], Biul. IHAR, 1997, 203, 41–55 (in Polish) Search in Google Scholar

[3] Leopold A.C., Coping with desiccation. In: Alscher R.G. and Cumming J.R., Stress responses in plants: Adaptation and Acclimation Mechanisms, Willy-Liss, New York, 1990, 37–56 Search in Google Scholar

[4] Lewak S., Seeds’ germination [KieŁkowanie nasion], In: Kopcewicz J., Lewak S. (Eds). Plant Physiology [Fizjologia roślin], 1st ed., PWN, Warszawa, 1998 (in Polish) Search in Google Scholar

[5] Contreras S., Barros M., Vigor tests on lettuce seeds and their correlation with emergence, Cien. Inv. Agr., 2005, 32(1), 3–10 10.7764/rcia.v32i1.301Search in Google Scholar

[6] Bewley J.D., Black M., Seeds-physiology of development and germination, 2nd Edn, Plenum Press, New York, 1994 10.1007/978-1-4899-1002-8Search in Google Scholar

[7] Bettey M., Finch-Savage W.E., King G.J., Lynn J.R., Quantitative genetic analysis of seed vigor and pre-emergence seedling growth traits in Brassica oleracea, New Phytol., 2000, 148, 227–286 http://dx.doi.org/10.1046/j.1469-8137.2000.00760.x10.1046/j.1469-8137.2000.00760.xSearch in Google Scholar

[8] Zhang Z.H., Yu S.B., Yu T., Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.), Field Crop Res., 2005, 91(2–3), 161–170 http://dx.doi.org/10.1016/j.fcr.2004.06.00410.1016/j.fcr.2004.06.004Search in Google Scholar

[9] Collard B.C.Y, Jahufer M.Z.Z, Brouwer J.B., Pang E.C.K., An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts, Euphytica, 2005, 142, 169–196 http://dx.doi.org/10.1007/s10681-005-1681-510.1007/s10681-005-1681-5Search in Google Scholar

[10] Landjeva S., Neumann K., Lohwasser U., Börner A., Molecular mapping of genomic regions associated with growth response to osmotic stress in wheat seedling, Biol. Plant., 2008, 52, 259–266 http://dx.doi.org/10.1007/s10535-008-0056-x10.1007/s10535-008-0056-xSearch in Google Scholar

[11] Cui K.H., Peng S.B., Xing Y.Z., Xu C.G., Yu S.B., Zhang Q., Molecular dissection of seedling-vigor and associated physiological traits in rice, Theor. Appl. Genet., 2002, 105, 745–753 http://dx.doi.org/10.1007/s00122-002-0908-210.1007/s00122-002-0908-2Search in Google Scholar PubMed

[12] Edney M.J., Mather D.E., Quantitative trait loci affecting germination traits and malt friability in a two-rowed by six-rowed barley cross, J. Cereal Sci., 2004, 39, 283–290 http://dx.doi.org/10.1016/j.jcs.2003.10.00810.1016/j.jcs.2003.10.008Search in Google Scholar

[13] Al Chaarani G.R., Gentzbittel L., Wędzony M., Sarrafi A., Identification of QTLs for germination and seeding development in sunflower (Helianthus annus L.), Plant Sci., 2005, 169, 221–227 http://dx.doi.org/10.1016/j.plantsci.2005.03.01610.1016/j.plantsci.2005.03.016Search in Google Scholar

[14] Rebetzke G.J., Richards R.A., Fischer V.M., Mickelson B.J., Breeding long coleoptile, reduced height wheats, Euphytica, 1999, 106, 159–168 http://dx.doi.org/10.1023/A:100351892011910.1023/A:1003518920119Search in Google Scholar

[15] Rebetzke G.J., Richards R.A., Sirault X.R.R., Morrison A.D., Genetic analysis of coleoptile length and diameter of wheat, Aust. J. Agric. Res., 2004, 55, 733–743 http://dx.doi.org/10.1071/AR0403710.1071/AR04037Search in Google Scholar

[16] Rebetzke G.J., Richards R.A., Fettel N.A., Long M., Condon A.G., Botwright T.L., Genotypic increase in coleoptiles length improves wheat establishment, early vigour and grain yield with deep sowing, Field Crop Res., 2007, 100, 10–23 http://dx.doi.org/10.1016/j.fcr.2006.05.00110.1016/j.fcr.2006.05.001Search in Google Scholar

[17] Rebetzke G.J., Ellis M.H., Bonnett D.G., Richards R.A., Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2007, 1,14, 1173–1183 http://dx.doi.org/10.1007/s00122-007-0509-110.1007/s00122-007-0509-1Search in Google Scholar PubMed

[18] Nawroz Abdul-Razzak T., Germination characteristics and molecular characterization of some wheat varieties in Sulaimanyah by SSR Marker, Turkish Journal of Biology, 2010, 34(2), 109–117 Search in Google Scholar

[19] Angaji S.A., Mapping QTLs for submergence tolerance during germination in rice, Afr. J. Biotechnol., 2008, 7(15), 2551–2558 Search in Google Scholar

[20] Baretto Dias P.M.B., Brunel-Muguet S., Dürr C., Huguet T., Demilly D., Wagner M. H., Teulat-Merah B., QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula, 2011, Theor. Appl. Genet., 122, 429–444 http://dx.doi.org/10.1007/s00122-010-1458-710.1007/s00122-010-1458-7Search in Google Scholar PubMed PubMed Central

[21] Foolad M.R., Lin G.Y., Chen F.Q., Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato, Plant Breed., 1999, 118, 167–173 http://dx.doi.org/10.1046/j.1439-0523.1999.118002167.x10.1046/j.1439-0523.1999.118002167.xSearch in Google Scholar

[22] Limami A.M., Rouillon C., Glevarec G., Gallais A., Hirel B., Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase, Plant Physiol., 2002, 130, 1860–1870 http://dx.doi.org/10.1104/pp.00964710.1104/pp.009647Search in Google Scholar PubMed PubMed Central

[23] Quarrie S.A., Steed A., Calestani C., Semikhodskii A., Lebreton C., Chinoy C., et al., A high density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments, Theor. Appl. Genet., 2005, 110, 865–880 http://dx.doi.org/10.1007/s00122-004-1902-710.1007/s00122-004-1902-7Search in Google Scholar PubMed

[24] CzyczyŁo-Mysza I., Tyrka M., Marcińska I., Skrzypek E., Karbarz M., Dziurka M., et al., Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin, Mol. Breed., 2013, 32, 189–21 http://dx.doi.org/10.1007/s11032-013-9862-810.1007/s11032-013-9862-8Search in Google Scholar PubMed PubMed Central

[25] Czyczylo-Mysza I., Marcińska I., Skrzypek E., Chrupek M., Grzesiak S., Hura T., et al., Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability, Plant Genetic Resources: Characterization and Utilization, 2011, 9(2), 291–295 http://dx.doi.org/10.1017/S147926211100020710.1017/S1479262111000207Search in Google Scholar

[26] Marcińska I., CzyczyŁo-Mysza I., Skrzypek E., Filek M., Grzesiak S., Grzesiak M.T., et al., Impact of osmotic stress on physiological and biochemical characteristics in drought susceptible and drought resistant wheat genotypes, Acta Physiol. Plant, 2013, 35, 451–461 http://dx.doi.org/10.1007/s11738-012-1088-610.1007/s11738-012-1088-6Search in Google Scholar

[27] Wang S., Basten C.J., Zeng Z.B., Windows QTL Cartographer, new version, statistical Genetics, North Carolina State University, 2007 Search in Google Scholar

[28] AOSA, Rules for testing seeds, Association of official seed analysts, AOSA, Lincoln, 1999 Search in Google Scholar

[29] ISTA, International rules for seed testing. International Seed Testing Association, Basserdorf, 2008 Search in Google Scholar

[30] ter Steege M.W., den Ouden F.M., Lambers H., Stam P., Peeters A.J.M., Genetic and physiological architecture of early vigor in Aegilops tauschii, the D-genome donor of hexaploid wheat. A quantitative trait loci analysis, Plant Physiol., 2005, 139, 1078–1094 http://dx.doi.org/10.1104/pp.105.06326310.1104/pp.105.063263Search in Google Scholar

[31] Pieta Filho C., Ellis R.H., The development of seed quality in spring barley in four environments. I. Germination and longevity, Seed Sci. Res., 1991, 1, 163–177 10.1017/S0960258500000830Search in Google Scholar

[32] Appa Rao S., Kameswara Rao N., Mengesha M.H., Germinability and seedling vigor of pearl millet seeds harvested at different stages of maturity, Field Crops Res., 1993, 32, 141–145 http://dx.doi.org/10.1016/0378-4290(93)90026-J10.1016/0378-4290(93)90026-JSearch in Google Scholar

[33] Stefani A., Meletti P., Onnis A., Low temperature storage of caryopses of Triticum durum: viability and longevity, Ann. Bot., 2000, 85, 403–406 http://dx.doi.org/10.1006/anbo.1999.105010.1006/anbo.1999.1050Search in Google Scholar

[34] Hrstková P., Chloupek O., Bébarová J., Estimation of barley seed vigour with respect to variety and provenance effects, Czech J. Genet. Plant. Breed., 2006, 42, 44–49 10.17221/3653-CJGPBSearch in Google Scholar

[35] Aparicio N., Villegas D., Araus J.L., Blanco R., Royo C., Seedling development and biomass as affected by seed size and morphology in durum wheat, J. Agric. Sci., 2002, 139, 143–150 http://dx.doi.org/10.1017/S002185960200241110.1017/S0021859602002411Search in Google Scholar

[36] Eagles H.A., Hollamby G.J., Gororo N.N., Eastwood R.F., Estimation and utilization of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs, Aust. J. Agric. Res., 2002, 53, 367–377 http://dx.doi.org/10.1071/AR0107410.1071/AR01074Search in Google Scholar

[37] Dubcovsky J., Marker-assisted selection in public breeding programs: the wheat experience, Crop Sci., 2004, 44, 1895–1898 http://dx.doi.org/10.2135/cropsci2004.189510.2135/cropsci2004.1895Search in Google Scholar

[38] Paterson A.H., Tanskley S.D., Sorrells M.E., DNA markers in plant improvement, Adv. Agron., 1991, 46, 39–90 http://dx.doi.org/10.1016/S0065-2113(08)60578-710.1016/S0065-2113(08)60578-7Search in Google Scholar

[39] Young N.D., A cautiously optimistic vision for marker-assisted selection, Mol. Breed., 1999, 5, 505–510 http://dx.doi.org/10.1023/A:100968440932610.1023/A:1009684409326Search in Google Scholar

[40] Dekkers J.C.M., Hospital F., The use of molecular genetics in the improvement of agricultural populations, Nat. Rev. Genet., 2002, 3, 22–32 http://dx.doi.org/10.1038/nrg70110.1038/nrg701Search in Google Scholar PubMed

[41] Villar R., Veneklaas E.J., Jordano P., Lambers H., Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species, New Phytol., 1998, 140, 425–437 http://dx.doi.org/10.1046/j.1469-8137.1998.00286.x10.1046/j.1469-8137.1998.00286.xSearch in Google Scholar

[42] Bultynck L., ter Steege M.W., Schortemeyer M., Poot P., Lambers H., From individual leaf elongation to whole shoot leaf area expansion; a comparison of three Aegilops and two Triticum species, Ann. Bot., 2004, 94, 99–108 http://dx.doi.org/10.1093/aob/mch11010.1093/aob/mch110Search in Google Scholar PubMed PubMed Central

[43] Tranbarger T.J., Forward B.S., Misra S., Regulation of NADPH-cytochrome P450 reductase expressed during Douglas-fir germination and seedling development, Plant Mol. Biol., 2000, 44, 141–153 http://dx.doi.org/10.1023/A:100642502570210.1023/A:1006425025702Search in Google Scholar

[44] Imai A., Matsuyama T., Hanzawa Y., Akiyama T., Tamaoki M., Saji H., et al., Spermidine synthase genes are essential for survival of Arabidopsis, Plant Physiol., 2004, 135, 1565–1573 http://dx.doi.org/10.1104/pp.104.04169910.1104/pp.104.041699Search in Google Scholar PubMed PubMed Central

[45] Landjeva S., Lohwasser U., Börner A., Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth, Euphytica, 2010, 171, 129–1 http://dx.doi.org/10.1007/s10681-009-0016-310.1007/s10681-009-0016-3Search in Google Scholar

[46] Quarrie S.A., Pekic Quarrie S., Radosevic R., Rancic D., Kaminska A., Barnes J.D., et al., Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes, J. Exp. Bot., 2006, 57, 2627–2637 http://dx.doi.org/10.1093/jxb/erl02610.1093/jxb/erl026Search in Google Scholar PubMed

[47] Börner A., Schumann E., Furste A., Cöster H., Leithold B., Röder M.S., et al., Mapping of quantitative trait loci determining agronomically important characters in hexaploid wheat (Triticum aestivum L.), Theor. Appl. Genet., 2002, 105, 921–936 http://dx.doi.org/10.1007/s00122-002-0994-110.1007/s00122-002-0994-1Search in Google Scholar PubMed

[48] Groos C., Robert N., Bervas E., Charmet G., Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat, Theor. Appl. Genet., 2003, 106, 1032–1040 10.1007/s00122-002-1111-1Search in Google Scholar PubMed

[49] McCartney C.A., Somers D.J., Humphreys D.G., Lukow O., Ames N., Noll J., et al., Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’, Genome, 2005, 48, 870–883 http://dx.doi.org/10.1139/g05-05510.1139/g05-055Search in Google Scholar PubMed

[50] Habash D.Z., Bernard S., Schondelmaier J., Weyen J., Quarrie S.A., The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield, Theor. Appl. Genet., 2007, 114, 403–419 http://dx.doi.org/10.1007/s00122-006-0429-510.1007/s00122-006-0429-5Search in Google Scholar PubMed

Published Online: 2014-1-7
Published in Print: 2014-4-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-013-0273-y/html
Scroll to top button