Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 28, 2010

The role of p53, bax, bcl2, and 8-OHdG in human acute myocardial infarction

  • Reza Najar EMAIL logo , Sayyed Ghaderian , Hosain Vakili , Akram Panah , Azam Farimani , Gashin Rezaie and Asghar Harchegani
From the journal Open Life Sciences

Abstract

Apoptosis is implicated in unfavorable remodeling of the left ventricle during acute myocardial infarction (AMI). Both DNA damage and p53 play important roles in regulating apoptosis. Expression patterns of apoptotic regulating genes such as p53, bax, and bcl-2 highlight the importance of inhibiting ventricle remodeling and subsequent injuries. In the present study, serum levels of p53 and 8-hydroxy-2-deoxyguanosine (8-OHdG) as well as p53, bax, and bcl-2 expression were examined after the onset of AMI in Iranian patients. Serum levels of p53 and 8-OHdG were measured by enzyme-linked immunosorbent assay (ELISA) and the presence of p53 protein and mRNA expression of p53, bax, and bcl-2 were analyzed by Western blotting and real time RT-PCR methods respectively. In patients presenting with AMI, serum levels of p53 and 8-OHdG were increased in comparison to healthy controls. Likewise, transcripts of p53 and bax were also elevated in patients while bcl-2 was decreased. Collectively, our data suggest the novel use of p53 and 8-OHdG as markers of apoptosis and DNA damage following AMI. Our results also revealed that apoptosis occurs in concert with an up-regulation of p53 and bax and a down-regulation of bcl-2 which may suggest a possible therapeutic intervention in patients recovering from AMI.

[1] Hamet P., Moreau P., Dam T., Orlov S., Tea B., de Blois D., et al., The time window of apoptosis: a new component in the therapeutic strategy for cardiovascular remodeling, J. Hypertens. Suppl., 1996, 14, S65–S70 Search in Google Scholar

[2] MacLellan W.R., Schneider M.D., Death by design: programmed cell death in cardiovascular biology and disease, Circ. Res., 1997, 81, 137–144 10.1161/01.RES.81.2.137Search in Google Scholar

[3] Gottlieb R.A., Burleson K.O., Kloner R.A., Babior B.M., Engler R.L., Reperfusion injury induces apoptosis in rabbit cardiomyocytes, J. Clin. Invest., 1994, 94, 1621–1628 http://dx.doi.org/10.1172/JCI11750410.1172/JCI117504Search in Google Scholar PubMed PubMed Central

[4] Kang P.M., Izumo S., Apoptosis and heart failure: A critical review of the literature, Circ. Res., 2000, 86, 1107–1113 10.1161/01.RES.86.11.1107Search in Google Scholar

[5] Takemura G., Fujiwara H., Role of apoptosis in remodeling after myocardial infarction, Pharmacol. Ther., 2004, 104, 1–16 http://dx.doi.org/10.1016/j.pharmthera.2004.07.00510.1016/j.pharmthera.2004.07.005Search in Google Scholar PubMed

[6] Israels L.G., Israels E.D., Apoptosis, Oncologist, 1999, 4, 332–339 10.1634/theoncologist.4-4-332Search in Google Scholar

[7] Ferrari R., Ceconi C., Curello S., Alfieri O., Visioli O., Myocardial damage during ischaemia and reperfusion, Eur. Heart. J., 1993, 14, G25–G30 10.1093/eurheartj/14.suppl_G.25Search in Google Scholar

[8] Srivastava S., Chandrasekar B., Bhatnagar A., Prabhu S.D., Lipid peroxidation-derived aldehydes and oxidative stress in the failing heart: role of aldose reductase, Am. J. Physiol. Heart. Circ. Physiol., 2002, 283, H2612–H2619 10.1152/ajpheart.00592.2002Search in Google Scholar PubMed

[9] Ide T., Tsutsui H., Hayashidani S., Kang D., Suematsu N., Nakamura K., et al., Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction, Circ. Res., 2001, 88, 529–535 10.1161/01.RES.88.5.529Search in Google Scholar

[10] Flesch M., Maack C., Cremers B., Baumer A.T., Sudkamp M., Bohm M., Effect of beta-blockers on free radical-induced cardiac contractile dysfunction, Circulation, 1999, 100, 346–353 10.1161/01.CIR.100.4.346Search in Google Scholar

[11] Yu B.P., Cellular defenses against damage from reactive oxygen species, Physiol. Rev., 1994, 74, 139–162 10.1152/physrev.1994.74.1.139Search in Google Scholar PubMed

[12] Belch J.J., Bridges A.B., Scott N., Chopra M., Oxygen free radicals and congestive heart failure, Br. Heart. J., 1991, 65, 245–248 http://dx.doi.org/10.1136/hrt.65.5.24510.1136/hrt.65.5.245Search in Google Scholar

[13] McMurray J., Chopra M., Abdullah I., Smith W.E., Dargie H.J., Evidence of oxidative stress in chronic heart failure in humans, Eur. Heart. J., 1993, 14, 1493–1498 10.1093/eurheartj/14.11.1493Search in Google Scholar

[14] Nakamura K., Fushimi K., Kouchi H., Mihara K., Miyazaki M., Ohe T., et al., Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II, Circulation, 1998, 98, 794–799 10.1161/01.CIR.98.8.794Search in Google Scholar

[15] Nakamura K., Kusano K., Nakamura Y., Kakishita M., Ohta K., Nagase S., et al., Carvedilol decreases elevated oxidative stress in human failing myocardium, Circulation, 2002, 105, 2867–2871 http://dx.doi.org/10.1161/01.CIR.0000018605.14470.DD10.1161/01.CIR.0000018605.14470.DDSearch in Google Scholar

[16] Maack C., Kartes T., Kilter H., Schafers H.J., Nickenig G., Bohm M., et al., Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment, Circulation, 2003, 108, 1567–1574 http://dx.doi.org/10.1161/01.CIR.0000091084.46500.BB10.1161/01.CIR.0000091084.46500.BBSearch in Google Scholar

[17] Nakamura K., Kusano K.F., Matsubara H., Nakamura Y., Miura A., Nishii N., et al., Relationship between oxidative stress and systolic dysfunction in patients with hypertrophic cardiomyopathy, J. Card. Fail., 2005, 11, 117–123 http://dx.doi.org/10.1016/j.cardfail.2004.05.00510.1016/j.cardfail.2004.05.005Search in Google Scholar

[18] Castro P.F., Greig D., Perez O., Moraga F., Chiong M., Diaz-Araya G., et al., Relation between oxidative stress, catecholamines, and impaired chronotropic response to exercise in patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy, Am. J. Cardiol., 2003, 92, 215–218 http://dx.doi.org/10.1016/S0002-9149(03)00543-510.1016/S0002-9149(03)00543-5Search in Google Scholar

[19] Tsutsui H., Novel pathophysiological insight and treatment strategies for heart failure—lessons from mice and patients, Circ. J., 2004, 68, 1095–1103 http://dx.doi.org/10.1253/circj.68.109510.1253/circj.68.1095Search in Google Scholar

[20] Nishizawa T., Iwase M., Kanazawa H., Ichihara S., Ichihara G., Nagata K., et al., Serial alterations of beta-adrenergic signaling in dilated cardiomyopathic hamsters: possible role of myocardial oxidative stress, Circ. J., 2004, 68, 1051–1060 http://dx.doi.org/10.1253/circj.68.105110.1253/circj.68.1051Search in Google Scholar

[21] Selivanova G., Wiman K.G., p53: a cell cycle regulator activated by DNA damage, Adv. Cancer Res., 1995, 66, 143–180 http://dx.doi.org/10.1016/S0065-230X(08)60253-510.1016/S0065-230X(08)60253-5Search in Google Scholar

[22] Schwartz J.L., Antoniades D.Z., Zhao S., Molecular and biochemical reprogramming of oncogenesis through the activity of prooxidants and antioxidants, Ann. N.Y. Acad. Sci., 1993, 686, 262–278 http://dx.doi.org/10.1111/j.1749-6632.1993.tb39185.x10.1111/j.1749-6632.1993.tb39185.xSearch in Google Scholar

[23] Dincer Y., Himmetoglu S., Bozcali E., Vural V.A., Akcay T., Circulating p53 and cytochrome c levels in acute myocardial infarction patients, J. Thromb. Thrombolysis, 2010, 29, 41–45 http://dx.doi.org/10.1007/s11239-009-0328-010.1007/s11239-009-0328-0Search in Google Scholar

[24] Kono Y., Nakamura K., Kimura H., Nishii N., Watanabe A., Banba K., et al., Elevated levels of oxidative DNA damage in serum and myocardium of patients with heart failure, Circ. J., 2006, 70, 1001–1005 http://dx.doi.org/10.1253/circj.70.100110.1253/circj.70.1001Search in Google Scholar

[25] Miyashita T., Krajewski S., Krajewska M., Wang H.G., Lin H.K., Liebermann D.A., et al., Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo, Oncogene, 1994, 9, 1799–1805 Search in Google Scholar

[26] Selvakumaran M., Lin H.K., Miyashita T., Wang H.G., Krajewski S., Reed J.C., et al., Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways, Oncogene, 1994, 9, 1791–1798 Search in Google Scholar

[27] Miyashita T., Reed J.C., Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, 1995, 80, 293–299 http://dx.doi.org/10.1016/0092-8674(95)90513-810.1016/0092-8674(95)90513-8Search in Google Scholar

[28] Miyashita T., Harigai M., Hanada M., Reed J.C., Identification of a p53-dependent negative response element in the bcl-2 gene, Cancer Res., 1994, 54, 3131–3135 Search in Google Scholar

[29] Shimoike T., Inoguchi T., Umeda F., Nawata H., Kawano K., Ochi H., The meaning of serum levels of advanced glycosylation end products in diabetic nephropathy, Metabolism, 2000, 49, 1030–1035 http://dx.doi.org/10.1053/meta.2000.773810.1053/meta.2000.7738Search in Google Scholar PubMed

[30] Weglarz L., Molin I., Orchel A., Parfiniewicz B., Dzierżewicz Z., Quantitative analysis of the level of p53 and p21WAF1 mRNA in human colon cancer HT-29 cells treated with inositol hexaphosphate, Acta Biochim. Pol., 2006, 53, 349–356 10.18388/abp.2006_3348Search in Google Scholar

[31] XU S.Z., Zhong W., Watson N.M., Dickerson E., Wake J.D., Lindow S.W., et al., Fluvastatin reduces oxidative damage in human vascular endothelial cells by upregulating Bcl-2, J. Thromb. Haemost., 2008, 6, 692–700 http://dx.doi.org/10.1111/j.1538-7836.2008.02913.x10.1111/j.1538-7836.2008.02913.xSearch in Google Scholar PubMed

[32] Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227, 680–685 http://dx.doi.org/10.1038/227680a010.1038/227680a0Search in Google Scholar PubMed

[33] Towbin H., Staehelin T., Gordon J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. USA, 1979, 76, 4350–4354 http://dx.doi.org/10.1073/pnas.76.9.435010.1073/pnas.76.9.4350Search in Google Scholar PubMed PubMed Central

[34] Toyoda Y., Shida T., Wakita N., Ozaki N., Takahashi R., Okada M., Evidence of apoptosis induced by myocardial ischemia: A case of ventricular septal rupture following acute myocardial infarction, Cardiology, 1998, 90, 149–151 http://dx.doi.org/10.1159/00000683510.1159/000006835Search in Google Scholar PubMed

[35] Veinot J.P., Gattinger D.A., Fliss H., Early apoptosis in human myocardial infarcts, Hum. Pathol., 1997, 28, 485–492 http://dx.doi.org/10.1016/S0046-8177(97)90039-310.1016/S0046-8177(97)90039-3Search in Google Scholar

[36] James T.N., The variable morphological coexistence of apoptosis and necrosis in human myocardial infarction: significance for understanding its pathogenesis, clinical course, diagnosis and prognosis, Coron. Artery Dis., 1998, 9, 291–307 http://dx.doi.org/10.1097/00019501-199809050-0000710.1097/00019501-199809050-00007Search in Google Scholar

[37] Nakatome M., Matoba R., Ogura Y., Tun Z., Iwasa M., Maeno Y., et al., Detection of cardiomyocyte apoptosis in forensic autopsy cases, Int. J. Legal Med., 2002, 116, 17–21 http://dx.doi.org/10.1007/s00414010024910.1007/s004140100249Search in Google Scholar

[38] Petrovic D., Zorc-Pleskovic R., Zorc M., Apoptosis and proliferation of cardiomyocytes in heart failure of different etiologies, Cardiovasc. Pathol., 2000, 9, 149–152 http://dx.doi.org/10.1016/S1054-8807(00)00032-610.1016/S1054-8807(00)00032-6Search in Google Scholar

[39] Zorc M., Vraspir-Porenta O., Zorc-Pleskovic R., Radovanovic N., Petrovic D., Apoptosis of myocytes and proliferation markers as prognostic factors in end-stage dilated cardiomyopathy, Cardiovasc. Pathol., 2003, 12, 36–39 http://dx.doi.org/10.1016/S1054-8807(02)00134-510.1016/S1054-8807(02)00134-5Search in Google Scholar

[40] Itoh G., Tamura J., Suzuki M., Suzuki Y., Ikeda H., Koike M., et al., DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis, Am. J. Pathol., 1995, 146, 1325–1331 Search in Google Scholar

[41] Kajstura J., Cheng W., Reiss K., Clark W.A., Sonnenblick E.H., Krajewski S., et al., Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats, Lab. Invest., 1996, 74, 86–107 Search in Google Scholar

[42] Liu Y., Cigola E., Cheng W., Kajstura J., Olivetti G., Hintze T.H., et al., Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs, Lab. Invest., 1995, 73, 771–787 Search in Google Scholar

[43] Li Z., Bing O.H., Long X., Robinson K.G., Lakatta E.G., Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat, Am. J. Physiol., 1997, 272, H2313–H2319 10.1152/ajpheart.1997.272.5.H2313Search in Google Scholar

[44] Beltrami C.A., Finato N., Rocco M., Feruglio G.A., Puricelli C., Cigola E., et al., Structural basis of end-stage failure in ischemic cardiomyopathy in humans, Circulation, 1994, 89, 151–163 10.1161/01.CIR.89.1.151Search in Google Scholar

[45] Narula J., Haider N., Virmani R., DiSalvo T.G., Kolodgie F.D., Hajjar R.J., et al., Apoptosis in myocytes in end-stage heart failure, N. Engl. J. Med., 1996, 335, 1182–1189 http://dx.doi.org/10.1056/NEJM19961017335160310.1056/NEJM199610173351603Search in Google Scholar

[46] Kasai H., Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis, Free Radic. Biol. Med., 2002, 33, 450–456 http://dx.doi.org/10.1016/S0891-5849(02)00818-310.1016/S0891-5849(02)00818-3Search in Google Scholar

[47] Gabbita S.P., Lovell M.A., Markesbery W.R., Increased nuclear DNA oxidation in the brain in Alzheimer’s disease, J. Neurochem., 1998, 71, 2034–2040 http://dx.doi.org/10.1046/j.1471-4159.1998.71052034.x10.1046/j.1471-4159.1998.71052034.xSearch in Google Scholar PubMed

[48] Cutler R.G., Human longevity and aging: possible role of reactive oxygen species, Ann. N.Y. Acad. Sci., 1991, 621, 1–28 http://dx.doi.org/10.1111/j.1749-6632.1991.tb16965.x10.1111/j.1749-6632.1991.tb16965.xSearch in Google Scholar

[49] Toyokuni S., Reactive oxygen species-induced molecular damage and its application in pathology, Pathol. Int., 1999, 49, 91–102 http://dx.doi.org/10.1046/j.1440-1827.1999.00829.x10.1046/j.1440-1827.1999.00829.xSearch in Google Scholar

[50] Williams G.T., Smith C.A., Molecular regulation of apoptosis: genetic controls on cell death, Cell, 1993, 74, 777–779 http://dx.doi.org/10.1016/0092-8674(93)90457-210.1016/0092-8674(93)90457-2Search in Google Scholar

[51] Greenberg B., Quinones M.A., Koilpillai C., Limacher M., Shindler D., Benedict C., et al., Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction, Results of the SOLVD echocardiography substudy, Circulation, 1995, 91, 2573–2581 10.1161/01.CIR.91.10.2573Search in Google Scholar

[52] Kabour A., Henegar J.R., Devineni V.R., Janicki J.S., Prevention of angiotensin II induced myocyte necrosis and coronary vascular damage by lisinopril and losartan in the rat, Cardiovasc. Res., 1995, 29, 543–548 10.1016/S0008-6363(96)88532-4Search in Google Scholar

Published Online: 2010-5-28
Published in Print: 2010-8-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 4.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-010-0030-4/html
Scroll to top button