Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 31, 2009

A novel neuroprotectant PAN-811 protects neurons from oxidative stress

  • Weiying Pan EMAIL logo , Chanteé Dancik , Valery Nelson , Zhi-Gang Jiang , Michael Lebowitz and Hossein Ghanbari
From the journal Open Life Sciences

Abstract

Hydrogen peroxide (H2O2), a major non-radical reactive oxygen species (ROS) could elicit intracellular oxidative damage and/or cause extracellular free calcium influx by activating the NMDA receptor or through calcium channels. In the present study, NMDA receptor antagonist MK-801 fully blocked H2O2-induced neuronal cell death, whereas green tea (GT) extract containing-antioxidants only partially suppressed the neurotoxicity of H2O2. These suggest that majority of ROS overproduction is downstream of H2O2-induced calcium influx. A novel neuroprotectant PAN-811 was previously demonstrated to efficiently attenuate ischemic neurotoxicity. PAN-811 hereby fully blocks H2O2-elicited neuronal cell death with a more advanced neuroprotective profile than that of GT extract. PAN-811 was also shown to protect against CaCl2-elicited neurotoxicity. Efficient protection against oxidative stress-induced neurotoxicity by PAN-811 indicates its potential application in treatment of ROS-mediated neurodegenerative diseases.

[1] Halliwell B., Reactive oxygen species in the central nervous system, J. Neurochem., 1992, 59, 1609–1623 http://dx.doi.org/10.1111/j.1471-4159.1992.tb10990.x10.1111/j.1471-4159.1992.tb10990.xSearch in Google Scholar PubMed

[2] Fatokun A.A., Stone T.W., Smith R.A., Oxidative stress in neurodegeneration and available means of protection, Front. Biosci., 2008, 13, 3288–3311 http://dx.doi.org/10.2741/292610.2741/2926Search in Google Scholar PubMed

[3] Perry G., Nunomura A., Cash A.D., Taddeo M.A., Hirai K., Aliev G., et al., Reactive oxygen: its sources and significance in Alzheimer disease, J. Neural. Transm. Suppl., 2002, 62, 69–75 10.1007/978-3-7091-6139-5_7Search in Google Scholar PubMed

[4] Aliev G., Smith M.A., de la Torre J.C., Perry G., Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer’s disease, Mitochondrion, 2004, 4, 649–663 http://dx.doi.org/10.1016/j.mito.2004.07.01810.1016/j.mito.2004.07.018Search in Google Scholar PubMed

[5] Ghanbari H.A., Ghanbari K., Harris P.L., Jones P.K., Kubat Z., Castellani R.J., et al., Oxidative damage in cultured human olfactory neurons from Alzheimer’s disease patients, Aging Cell, 2004, 3, 41–44 http://dx.doi.org/10.1111/j.1474-9728.2004.00083.x10.1111/j.1474-9728.2004.00083.xSearch in Google Scholar PubMed

[6] Honda K., Casadesus G., Petersen R.B., Perry G., Smith M.A., Oxidative stress and redox-active iron in Alzheimer’s disease, Ann. N.Y. Acad. Sci., 2004, 1012, 179–182 http://dx.doi.org/10.1196/annals.1306.01510.1196/annals.1306.015Search in Google Scholar PubMed

[7] Mailly F., Marin P., Israël M., Glowinski J., Prémont J., Increase in external glutamate and NMDA receptor activation contribute to H2O2-induced neuronal apoptosis, J. Neurochem., 1999, 73, 1181–1188 http://dx.doi.org/10.1046/j.1471-4159.1999.0731181.x10.1046/j.1471-4159.1999.0731181.xSearch in Google Scholar PubMed

[8] Avshalumov M.V., Rice M.E., NMDA receptor activation mediates hydrogen peroxide-induced pathophysiology in rat hippocampal slices, J. Neurophysiol., 2002, 87, 2896–2903 10.1152/jn.2002.87.6.2896Search in Google Scholar PubMed

[9] Smith M.A., Herson P.S., Lee K., Pinnock R.D., Ashford M.L., Hydrogen-peroxide-induced toxicity of rat striatal neurones involves activation of a nonselective cation channel, J. Physiol., 2003, 547, 417–425 http://dx.doi.org/10.1113/jphysiol.2002.03456110.1113/jphysiol.2002.034561Search in Google Scholar PubMed PubMed Central

[10] Kaneko S., Kawakami S., Hara Y., Wakamori M., Itoh E., Minami T., et al., A critical role of TRPM2 in neuronal cell death by hydrogen peroxide, J. Pharmacol. Sci., 2006, 101, 66–76 http://dx.doi.org/10.1254/jphs.FP006012810.1254/jphs.FP0060128Search in Google Scholar

[11] Liu M.C., Lin T.S., Sartorelli A.C., Synthesis and antitumor activity of amino derivatives of pyridine-2-carboxaldehyde thiosemicarbazone, J. Med. Chem., 1992, 35, 3672–3677 http://dx.doi.org/10.1021/jm00098a01210.1021/jm00098a012Search in Google Scholar

[12] Richardson D.R., Iron chelators as therapeutic agents for the treatment of cancer, Crit. Rev. Oncol. Hematol., 2002, 42, 267–281 http://dx.doi.org/10.1016/S1040-8428(01)00218-910.1016/S1040-8428(01)00218-9Search in Google Scholar

[13] Jiang Z.G., Lu X.C., Nelson V., Yang X., Pan W., Chen R.W., et al., A multifunctional cytoprotective agent that reduces neurodegeneration after ischemia, Proc. Natl. Acad. Sci. USA, 2006, 103, 1581–1586 http://dx.doi.org/10.1073/pnas.051057310310.1073/pnas.0510573103Search in Google Scholar

[14] McGinnis K.M., Wang K.K., Gnegy M.E., Alterations of extracellular calcium elicit selective modes of cell death and protease activation in SH-SY5Y human neuroblastoma cells, J. Neurochem., 1999, 72, 1853–1863 http://dx.doi.org/10.1046/j.1471-4159.1999.0721853.x10.1046/j.1471-4159.1999.0721853.xSearch in Google Scholar

[15] Volterra A., Trotti D., Racagni G., Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanism, Mol. Pharmacol., 1994, 46, 986–992 Search in Google Scholar

[16] Whittemore E.R., Loo D.T., Watt J.A., Cotman C.W., A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture, Neuroscience, 1995, 67, 921–932 http://dx.doi.org/10.1016/0306-4522(95)00108-U10.1016/0306-4522(95)00108-USearch in Google Scholar

[17] Koh S.B., Ban J.Y., Lee B.Y., Seong Y.H., Protective effects of fangchinoline and tetrandrine on hydrogen peroxide-induced oxidative neuronal cell damage in cultured rat cerebellar granule cells, Planta Med., 2003, 69, 506–512 http://dx.doi.org/10.1055/s-2003-4064710.1055/s-2003-40647Search in Google Scholar

[18] Kemmerling U., Muñoz P., Müller M., Sánchez G., Aylwin M.L., Klann E., et al., Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons, Cell Calcium, 2007, 41, 491–502 http://dx.doi.org/10.1016/j.ceca.2006.10.00110.1016/j.ceca.2006.10.001Search in Google Scholar

[19] Dubinsky J.M., Kristal B.S., Elizondo-Fournier M., An obligate role for oxygen in the early stages of glutamate-induced, delayed neuronal death, J. Neurosci., 1995, 15, 7071–7078 10.1523/JNEUROSCI.15-11-07071.1995Search in Google Scholar

[20] Patel M., Day B.J., Crapo J.D., Fridovich I., McNamara J.O., Requirement for superoxide in excitotoxic cell death, Neuron, 1996, 16, 345–355 http://dx.doi.org/10.1016/S0896-6273(00)80052-510.1016/S0896-6273(00)80052-5Search in Google Scholar

[21] Fukuzawa K., Gebicki J.M., Oxidation of alphatocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals, Arch. Biochem. Biophys., 1983, 226, 242–251 http://dx.doi.org/10.1016/0003-9861(83)90290-410.1016/0003-9861(83)90290-4Search in Google Scholar

[22] Ozawa T., Hanaki A., Matsuo M., Reactions of superoxide ion with tocopherol and its model compounds: correlation between the physiological activities of tocopherols and the concentration of chromanoxyl-type radicals, Biochem. Int., 1983, 6, 685–692 Search in Google Scholar

[23] McCay P.B., Vitamin E: interactions with free radicals and ascorbate, Annu. Rev. Nutr., 1985, 5, 323–340 http://dx.doi.org/10.1146/annurev.nu.05.070185.00154310.1146/annurev.nu.05.070185.001543Search in Google Scholar

[24] Burton G.W., Foster D.O., Perly B., Slater, T.F., Smith I.C., Ingold K.U., Biological antioxidants, Philos. Trans. R. Soc. Lond. B Biol. Sci., 1985, 311, 565–578 http://dx.doi.org/10.1098/rstb.1985.016410.1098/rstb.1985.0164Search in Google Scholar

[25] Atkinson J., Epand R.F., Epand R.M., Tocopherols and tocotrienols in membranes: a critical review, Free Radic. Biol. Med., 2008, 44, 739–764 http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.01010.1016/j.freeradbiomed.2007.11.010Search in Google Scholar

[26] Hemilä H., Roberts P., Wikström M., Activated polymorphonuclear leucocytes consume vitamin C, FEBS Lett., 1984, 178, 25–30 http://dx.doi.org/10.1016/0014-5793(84)81232-610.1016/0014-5793(84)81232-6Search in Google Scholar

[27] Nishikimi M., Oxidation of ascorbic acid with superoxide anion generated by the xanthinexanthine oxidase system, Biochem. Biophys. Res. Commun., 1975, 63, 463–468 http://dx.doi.org/10.1016/0006-291X(75)90710-X10.1016/0006-291X(75)90710-XSearch in Google Scholar

[28] Bielski B.H., Richter H.W., Chan P.C., Some properties of the ascorbate free radical, Ann. N.Y. Acad. Sci., 1975, 258, 231–237 http://dx.doi.org/10.1111/j.1749-6632.1975.tb29283.x10.1111/j.1749-6632.1975.tb29283.xSearch in Google Scholar

[29] Bodannes R.S., Chan P.C., Ascorbic acid as a scavenger of singlet oxygen, FEBS Lett., 1979, 105, 195–196 http://dx.doi.org/10.1016/0014-5793(79)80609-210.1016/0014-5793(79)80609-2Search in Google Scholar

[30] Bastianetto S., Ramassamy C., Doré S., Christen Y., Poirier J., Quirion R., The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid, Eur. J. Neurosci., 2000, 12, 1882–1890 http://dx.doi.org/10.1046/j.1460-9568.2000.00069.x10.1046/j.1460-9568.2000.00069.xSearch in Google Scholar PubMed

[31] Reisberg B., Doody R., Stöffler A., Schmitt F., Ferris S., Möbius H.J., Memantine in moderate-to-severe Alzheimer’s disease, N. Engl. J. Med., 2003, 348, 1333–1341 http://dx.doi.org/10.1056/NEJMoa01312810.1056/NEJMoa013128Search in Google Scholar PubMed

Published Online: 2009-1-31
Published in Print: 2009-3-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-008-0062-1/html
Scroll to top button