Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 17, 2008

Microstructural study of MBE-grown ZnO film on GaN/sapphire (0001) substrate

  • Hua Li EMAIL logo , Jianping Sang , Chang Liu , Hongbing Lu and Juncheng Cao
From the journal Open Physics

Abstract

Single crystalline ZnO film is grown on GaN/sapphire (0001) substrate by molecular beam epitaxy. Ga2O3 is introduced into the ZnO/GaN heterostructure intentionally by oxygen-plasma pre-exposure on the GaN surface prior to ZnO growth. The crystalline orientation and interfacial microstructure are characterized by X-ray diffraction and transmission electron microscopy. X-ray diffraction analysis shows strong c-axis preferred orientation of the ZnO film. Cross-sectional transmission electron microscope images reveal that an additional phase is formed at the interface of ZnO/GaN. Through a comparison of diffraction patterns, we confirm that the interface layer is monoclinic Ga2O3 and the main epitaxial relationship should be $$ (0001)_{ZnO} \parallel (001)_{Ga_2 O_3 } \parallel (0001)_{GaN} $$ and $$ [2 - 1 - 10]_{ZnO} \parallel [010]_{Ga_2 O_3 } \parallel [2 - 1 - 10]_{GaN} $$.

[1] Z.W. Pang, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001) http://dx.doi.org/10.1126/science.105812010.1126/science.1058120Search in Google Scholar

[2] H. Rensmo et al., J. Phys. Chem. B 101, 2598 (1997) http://dx.doi.org/10.1021/jp962918b10.1021/jp962918bSearch in Google Scholar

[3] H.J. Muhret et al., Adv. Mater. 12, 231 (2000) http://dx.doi.org/10.1002/(SICI)1521-4095(200002)12:3<231::AID-ADMA231>3.0.CO;2-D10.1002/(SICI)1521-4095(200002)12:3<231::AID-ADMA231>3.0.CO;2-DSearch in Google Scholar

[4] M.H. Huang et al., Science 292, 1897 (2001) http://dx.doi.org/10.1126/science.106036710.1126/science.1060367Search in Google Scholar

[5] C.H. Liu et al., Appl. Phys. Lett. 83, 3168 (2003) http://dx.doi.org/10.1063/1.160923210.1063/1.1609232Search in Google Scholar

[6] W. Göpel, J.W. Gardner, J. Hesse, Sensors Applications (Wiely-VCH, Weinheim, 2005) Search in Google Scholar

[7] D.M. Bagnall et al., Appl. Phys. Lett. 70, 2230 (1997) http://dx.doi.org/10.1063/1.11882410.1063/1.118824Search in Google Scholar

[8] D.C. Look, D.C. Reynolds, J.W. Hemsky, R.L. Jones, J.R. Sizelove, Appl. Phys. Lett. 75, 811 (1999) http://dx.doi.org/10.1063/1.12452110.1063/1.124521Search in Google Scholar

[9] H. Saeki, H. Tabata, T. Kawai, Solid State Commun. 120, 439 (2001) http://dx.doi.org/10.1016/S0038-1098(01)00400-810.1016/S0038-1098(01)00400-8Search in Google Scholar

[10] K. Nakahara et al., J. Crystal Growth 227–228, 923 (2001) http://dx.doi.org/10.1016/S0022-0248(01)00929-010.1016/S0022-0248(01)00929-0Search in Google Scholar

[11] A. El-Shaer, A. CHe Mofor, A. Bakin, M. Kreye, A. Waag, Superlattices Microstruct. 38, 265 (2005) http://dx.doi.org/10.1016/j.spmi.2005.08.02510.1016/j.spmi.2005.08.025Search in Google Scholar

[12] J. Dai et al., J. Crystal Growth 290, 426 (2006) http://dx.doi.org/10.1016/j.jcrysgro.2006.01.00910.1016/j.jcrysgro.2006.01.009Search in Google Scholar

[13] T. Gruber, C. Kirchner, K. Thonke, R. Sauer, A. Waag, Phys. Status Solidi A 192, 166 (2002) http://dx.doi.org/10.1002/1521-396X(200207)192:1<166::AID-PSSA166>3.0.CO;2-G10.1002/1521-396X(200207)192:1<166::AID-PSSA166>3.0.CO;2-GSearch in Google Scholar

[14] B.P. Zhang, K. Wakatsuki, N.T. Binh, N. Usami, Y. Segawa, Thin Solid Films 449, 12 (2004) http://dx.doi.org/10.1016/S0040-6090(03)01466-410.1016/S0040-6090(03)01466-4Search in Google Scholar

[15] H.L. Porter, A.L. Cai, J.F. Muth, J. Narayan, Appl. Phys. Lett. 86, 211918 (2005) http://dx.doi.org/10.1063/1.192319410.1063/1.1923194Search in Google Scholar

[16] F.K. Shan et al., Appl. Phys. Lett. 86, 221910 (2005) http://dx.doi.org/10.1063/1.193907810.1063/1.1939078Search in Google Scholar

[17] S.F. Chichibu, T. Yoshida, T. Onuma, H. Nakanishi, J. Appl. Phys. 91, 874 (2002) http://dx.doi.org/10.1063/1.142623810.1063/1.1426238Search in Google Scholar

[18] D.K. Hwang et al., Appl. Phys. Lett. 86, 151917 (2005) http://dx.doi.org/10.1063/1.189548010.1063/1.1895480Search in Google Scholar

[19] B.M. Ataev, W.V. Lundin, V.V. Mamedov, A.M. Bagamadova, E.E. Zavarin, J. Phys.-Condens. Matter 13, L211 (2001) http://dx.doi.org/10.1088/0953-8984/13/9/10310.1088/0953-8984/13/9/103Search in Google Scholar

[20] T. Makino et al., Appl. Phys. Lett. 79, 1282 (2001) http://dx.doi.org/10.1063/1.139832810.1063/1.1398328Search in Google Scholar

[21] S.J. An et al., Appl. Phys. Lett. 84, 3612 (2004) http://dx.doi.org/10.1063/1.173818010.1063/1.1738180Search in Google Scholar

[22] Y.I. Alivov, J.E. Van Nostrand, D.C. Look, M.V. Chukichev, B.M. Ataev, Appl. Phys. Lett. 83, 2943 (2003) http://dx.doi.org/10.1063/1.161530810.1063/1.1615308Search in Google Scholar

[23] H. Li et al., Appl. Surf. Sci. 253, 8524 (2007) http://dx.doi.org/10.1016/j.apsusc.2007.04.02810.1016/j.apsusc.2007.04.028Search in Google Scholar

[24] S. Lee, D.Y. Kim, Mat. Sci. Eng. B-Solid 137, 80 (2007) http://dx.doi.org/10.1016/j.mseb.2006.10.01410.1016/j.mseb.2006.10.014Search in Google Scholar

[25] S.K. Hong et al., Phys. Rev. B 65, 115331 (2002) http://dx.doi.org/10.1103/PhysRevB.65.11533110.1103/PhysRevB.65.115331Search in Google Scholar

Published Online: 2008-7-17
Published in Print: 2008-9-1

© 2008 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-008-0032-2/html
Scroll to top button