Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 29, 2013

Numerical simulation of surface acoustic wave actuated cell sorting

  • Thomas Franke EMAIL logo , Ronald Hoppe , Christopher Linsenmann and Kidist Zeleke
From the journal Open Mathematics

Abstract

We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer (IDT) close to the lateral wall of the separation channel for generation of the SAWs. The cells can be distinguished by fluorescence. The inflow velocities are tuned so that without SAW actuation a cell of type I leaves the device through a designated outflow channel. However, if a cell of type II is detected, the IDT is switched on and the SAWs modify the fluid flow so that the cell leaves the separation channel through the other outflow boundary. The motion of a cell in the carrier fluid is modeled by the Finite Element Immersed Boundary method (FE-IB). Numerical results are presented that illustrate the feasibility of the surface acoustic wave actuated cell sorting approach.

[1] Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P., Molecular Biology of the Cell, 4th ed., Garland Science, New York, 2002 Search in Google Scholar

[2] Antil H., Glowinski R., Hoppe R.H.W., Linsenmann C., Pan T.-W., Wixforth A., Modeling, simulation, and optimization of surface acoustic wave driven microfluidic biochips, J. Comput. Math., 2010, 28(2), 149–169 10.4208/jcm.2009.10-m1001Search in Google Scholar

[3] Bekah D., Measurement of Viscoelastic Properties of Treated and Untreated Cancer Cells Using Passive Microrheology, MSc thesis, Ryerson University, Toronto, 2010, available at http://digitalcommons.ryerson.ca/dissertations/ Search in Google Scholar

[4] Boffi D., Cavallini N., Gastaldi L., Finite element approach to immersed boundary method with different fluid and solid densities, Math. Models Methods Appl. Sci., 2011, 21(12), 2523–2550 http://dx.doi.org/10.1142/S021820251100582910.1142/S0218202511005829Search in Google Scholar

[5] Boffi D., Gastaldi L., A finite element approach for the immersed boundary method, Comput.&Structures, 2003, 81(8–11), 491–501 http://dx.doi.org/10.1016/S0045-7949(02)00404-210.1016/S0045-7949(02)00404-2Search in Google Scholar

[6] Boffi D., Gastaldi L., Heltai L., Numerical stability of the finite element immersed boundary method, Math. Models Methods Appl. Sci., 2007, 17(10), 1479–1505 http://dx.doi.org/10.1142/S021820250700235210.1142/S0218202507002352Search in Google Scholar

[7] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math., 15, Springer, Berlin-Heidelberg-New York, 1991 10.1007/978-1-4612-3172-1Search in Google Scholar

[8] Carey J.L., McCoy J.P., Keren D.F. (Eds.), Flow Cytometry in Clinical Diagnostics, 4th ed., American Society for Clinical Pathology Press, Chicago, 2007 Search in Google Scholar

[9] Cui H.-H., Voldman J., He X.-F., Lim K.-M., Separation of particles by pulsed dielectrophoresis, Lab on a Chip, 2009, 9(16), 2306–2312 http://dx.doi.org/10.1039/b906202e10.1039/b906202eSearch in Google Scholar PubMed

[10] Eisenstein M., Cell sorting: divide and conquer, Nature, 2006, 441, 1179–1185 http://dx.doi.org/10.1038/4411179a10.1038/4411179aSearch in Google Scholar PubMed

[11] Eringen A.C., Maugin G.A., Electrodynamics of Continua I, Springer, Berlin-Heidelberg-New York, 1990 http://dx.doi.org/10.1007/978-1-4612-3236-010.1007/978-1-4612-3236-0Search in Google Scholar

[12] Franke T., Braunmüller S., Frommelt T., Wixforth A., Sorting of solid and soft objects in vortices driven by surface acoustic waves, SPIE Proceedings, 2009, 7365, #73650O 10.1117/12.821701Search in Google Scholar

[13] Franke T., Braunmüller S., Schmid L., Wixforth A., Weitz D.A., Surface acoustic wave actuated cell sorting (SAWACS), Lab on a Chip, 2010, 10(6), 789–794 http://dx.doi.org/10.1039/b915522h10.1039/b915522hSearch in Google Scholar PubMed

[14] Franke T., Hoppe R.H.W., Linsenmann C., Schmid L., Willbold C., Wixforth A., Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows, Comput. Vis. Sci., 2011, 14(4), 167–180 http://dx.doi.org/10.1007/s00791-012-0172-110.1007/s00791-012-0172-1Search in Google Scholar

[15] Gantner A., Hoppe R.H.W., Köster D., Siebert K.G., Wixforth A., Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips, Comput. Vis. Sci., 2007, 10(3), 145–161 http://dx.doi.org/10.1007/s00791-006-0040-y10.1007/s00791-006-0040-ySearch in Google Scholar

[16] Hawley T.S., Hawley R.G. (Eds.), Flow Cytometry Protocols, 2nd ed., Methods in Molecular Biology, 263, Humana Press, Totowa, 2004 10.1385/1592597734Search in Google Scholar

[17] Hoppe R.H.W., Linsenmann C., An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method, J. Comput. Phys., 2012, 231(14), 4676–4693 http://dx.doi.org/10.1016/j.jcp.2012.03.00410.1016/j.jcp.2012.03.004Search in Google Scholar

[18] Maugin G.A., Continuum Mechanics of Electromagnetic Solids, North-Holland Ser. Appl. Math. Mech., 33, North-Holland, Amsterdam, 1988 Search in Google Scholar

[19] Pamme N., Continuous flow separations in microfluidic devices, Lab on a Chip, 2007, 7(12), 1644–1659 http://dx.doi.org/10.1039/b712784g10.1039/b712784gSearch in Google Scholar

[20] Peskin C.S., Numerical analysis of flood flow in the heart, J. Comput. Phys., 1977, 25(3), 220–252 http://dx.doi.org/10.1016/0021-9991(77)90100-010.1016/0021-9991(77)90100-0Search in Google Scholar

[21] Peskin C.S., The immersed boundary method, Acta Numer., 2002, 11, 479–517 http://dx.doi.org/10.1017/S096249290200007710.1017/S0962492902000077Search in Google Scholar

[22] Petersson F., Åberg L., Swärd-Nilsson A.-M., Laurell T., Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation, Analytical Chemistry, 2007, 79(14), 5117–5123 http://dx.doi.org/10.1021/ac070444e10.1021/ac070444eSearch in Google Scholar PubMed

[23] Qu B.-Y., Wu Z.-Y., Fang F., Bai Z.-M., Yang D.-Z., Xu S.-K., A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling, Analytical and Bioanalytical Chemistry, 2008, 392(7–8), 1317–1324 http://dx.doi.org/10.1007/s00216-008-2382-410.1007/s00216-008-2382-4Search in Google Scholar PubMed

[24] Seo J., Lean M.H., Kole A., Membrane-free microfiltration by asymmetrical inertial migration, Applied Physics Letters, 2007, 91(3), #033901 http://dx.doi.org/10.1063/1.275627210.1063/1.2756272Search in Google Scholar

[25] Shapiro H.M., Practical Flow Cytometry, John Wiley & Sons, Hoboken, 2003 http://dx.doi.org/10.1002/047172273110.1002/0471722731Search in Google Scholar

[26] Shi J., Huang H., Stratton Z., Huang Y., Huang T.J., Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW), Lab on a Chip, 2009, 9(23), 3354–3359 http://dx.doi.org/10.1039/b915113c10.1039/b915113cSearch in Google Scholar PubMed

[27] Shi J., Mao X., Ahmed D., Colletti A., Huang T.J., Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW), Lab on a Chip, 2008, 8(2), 221–223 http://dx.doi.org/10.1039/b716321e10.1039/B716321ESearch in Google Scholar

[28] Skalak R., Chien S., Handbook of Bioengineering, McGraw-Hill, New York, 1987 10.1115/1.3138695Search in Google Scholar

[29] Sklar L.A. (Ed.), Flow Cytometry for Biotechnology, Oxford University Press, New York, 2005 10.1093/oso/9780195183146.001.0001Search in Google Scholar

[30] Tartar L., An Introduction to Sobolev Spaces and Interpolation Spaces, Lect. Notes Unione Mat. Ital., 3, Springer, Berlin, 2007 Search in Google Scholar

[31] Valero A., Braschler T., Demierre N., Renaud P., A miniaturized continuous dielectrophoretic cell sorter and its applications, Biomicrofluidics, 2010, 4(2), #022807 10.1063/1.3430542Search in Google Scholar PubMed PubMed Central

[32] Zborowski M., Chalmers J.J., Magnetic cell sorting, In: Immunochemical Protocols, Methods in Molecular Biology, 295, Humana Press, New York, 2005, 291–300 http://dx.doi.org/10.1385/1-59259-873-0:29110.1385/1-59259-873-0:291Search in Google Scholar

[33] Zhu J., Xuan X., Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels, Biomicrofluidics, 2011, 5(2), #024111 http://dx.doi.org/10.1063/1.359988310.1063/1.3599883Search in Google Scholar PubMed PubMed Central

Published Online: 2013-1-29
Published in Print: 2013-4-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-012-0165-9/html
Scroll to top button