Skip to main content
Log in

Interval algorithm for absolute value equations

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

We investigate the absolute value equations Ax−|x| = b. Based on ɛ-inflation, an interval verification method is proposed. Theoretic analysis and numerical results show that the new proposed method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld G., Mayer G., Interval Analysis: Theory and Applications, J. Comput. Appl. Math., 2000, 121, 421–464

    Article  MathSciNet  MATH  Google Scholar 

  2. Caccetta L, Qu B., Zhou G., A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 2011, 48(1), 45–58

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen X., Qi L., Sun D., Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities, Math. Comp., 1998, 67(222), 519–540

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarke F.H., Optimization and Nonsmooth Analysis, 2nd ed., Classics Appl. Math., 5, Society for Industrial and Applied Mathematics, Philadelphia, 1990

    MATH  Google Scholar 

  5. Mangasarian O.L, Absolute value programming, Comput. Optim. Appl, 2007, 36(1), 43–53

    Article  MathSciNet  MATH  Google Scholar 

  6. Mangasarian O.L, A generalized Newton method for absolute value equations, Optim. Lett., 2009, 3(1), 101–108

    Article  MathSciNet  MATH  Google Scholar 

  7. Mangasarian O.L, Knapsack feasibility as an absolute value equation solvable by successive linear programming, Optim. Lett, 2009, 3(2), 161–170

    Article  MathSciNet  MATH  Google Scholar 

  8. Mangasarian O.L, Meyer R.R., Absolute value equations, Linear Algebra Appl., 2006, 419(2–3), 359–367

    Article  MathSciNet  MATH  Google Scholar 

  9. Mayer G., Epsilon-inflation in verification algorithms, J. Comput. Appl. Math., 1995, 60(1–2), 147–169

    Article  MathSciNet  MATH  Google Scholar 

  10. Moore R.E., A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal., 1977, 14(4), 611–615

    Article  MathSciNet  MATH  Google Scholar 

  11. Moore R.E., Methods and Applications of Interval Analysis, SIAM Stud. Appl. Math., 2, Society for Industrial and Applied Mathematics, Philadelphia, 1979

    MATH  Google Scholar 

  12. Prokopyev O., On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 2009, 44(3), 363–372

    Article  MathSciNet  MATH  Google Scholar 

  13. Qi L., Sun D., Smoothing functions and smoothing Newton method for complementarity and variational inequality problems, J. Optim. Theory Appl., 2002, 113(1), 121–147

    Article  MathSciNet  MATH  Google Scholar 

  14. Rohn J., Systems of linear interval equations, Linear Algebra Appl., 1989, 126, 39–78

    Article  MathSciNet  MATH  Google Scholar 

  15. Rohn J., A theorem of the alternatives for the equation Ax + B|x| = b, Linear Multilinear Algebra, 2004, 52(6), 421–426

    Article  MathSciNet  MATH  Google Scholar 

  16. Rohn J., Description of all solutions of a linear complementarity problem, Electron. J. Linear Algebra, 2009, 18, 246–252

    MathSciNet  MATH  Google Scholar 

  17. Rohn J., An algorithm for solving the absolute value equation, Electron. J. Linear Algebra, 2009, 18, 589–599

    MathSciNet  MATH  Google Scholar 

  18. Rohn J., On unique solvability of the absolute value equation, Optim. Lett., 2009, 3(4), 603–606

    Article  MathSciNet  MATH  Google Scholar 

  19. Rohn J., A residual existence theorem for linear equations, Optim. Lett., 2010, 4(2), 287–292

    Article  MathSciNet  MATH  Google Scholar 

  20. Rump S.M., Kleine Fehlerschranken bei Matrixproblemen, Ph.D. thesis, Universität Karlsruhe, 1980

  21. Rump S.M., New results on verified inclusions, In: Accurate Scientific Computations, Bad Neuenahr, 1985, Lecture Notes in Comput. Sci., 235, Springer, Berlin, 1986, 31–69

    Google Scholar 

  22. Rump S.M., On the solution of interval linear systems, Computing, 1992, 47(3–4), 337–353

    Article  MathSciNet  MATH  Google Scholar 

  23. Rump S.M., Verified solution of large systems and global optimization problems, J. Comput. Appl. Math., 1995, 60(1–2), 201–218

    Article  MathSciNet  MATH  Google Scholar 

  24. Rump S.M., INTLAB-INTerval LABoratory, In: Developments in Reliable Computing, Budapest, September 22–25, 1998, Kluwer, Dordrecht, 1999, 77–104

    Google Scholar 

  25. Zhang C, Wei Q.J., Global and finite convergence of a generalized Newton method for absolute value equations, J. Optim. Theory Appl., 2009, 143(2), 391–403

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixiang Wang.

About this article

Cite this article

Wang, A., Wang, H. & Deng, Y. Interval algorithm for absolute value equations. centr.eur.j.math. 9, 1171–1184 (2011). https://doi.org/10.2478/s11533-011-0067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-011-0067-2

MSC

Keywords

Navigation