Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 20, 2007

Addition of TiO2 nanowires in different polymorphs for dye-sensitized solar cells

  • Keisuke Asagoe EMAIL logo , Supachai Ngamsinlapasathian , Yoshikazu Suzuki and Susumu Yoshikawa
From the journal Open Chemistry

Abstract

TiO2 (B) and TiO2 anatase nanowires were prepared at 150 °C for 120 h by a hydrothermal method followed by calcination in air at 400 °C for 2 h and at 700 °C for 2 h for TiO2 (B) and TiO2 anatase, respectively. Although dye-sensitized solar cells (DSC) with fully nanowire electrodes showed a rather low light-to-electricity conversion efficiency of 1.33 % for TiO2 (B) and 2.42% for TiO2 anatase, 10 wt % nanowire-dispersed electrodes in a P-25 TiO2-nanoparticle matrix demonstrated improved efficiency of 6.17 % for TiO2 (B) and 6.53% for TiO2 anatase, these exceeding that of pure P-25 electrodes in this work (η=5.59%). The dominant mechanisms of the improvement at 10 wt% for the two different polymorphs are thought to be different, i.e., a light-scattering and film-thickness increment for the TiO2 (B) system, whereas there is an improved conduction path through the matrix for the TiO2 anatase system.

[1] S. Uchida, R. Chiba, M. Tomiha, N. Masaki and M. Shirai: “Application of Titania Nanotubes to a Dye-Sensitized Solar Cell”, Electrochem., Vol. 70, (2002), pp. 418–420. Search in Google Scholar

[2] M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo and D.Y. Kim: “Electrospun TiO2 Electrodes for Dye-Sensitized Solar Cells”, Nanotechnology, Vol. 15, (2004), pp. 1861–1865. http://dx.doi.org/10.1088/0957-4484/15/12/03010.1088/0957-4484/15/12/030Search in Google Scholar

[3] J. B. Baxter, and E. S. Aydil: “Nanowire-Based Dye-Sensitized Solar Cells”, Appl. Phys. Lett. Vol. 86, (2005), no. 053114. Search in Google Scholar

[4] J. B. Baxter, and E. S. Aydil: “Dye-Sensitized Solar Cells Based on Semiconductuor Morphologies with ZnO Nanowires”, Sol. Energ. Mat. Sol. C., Vol. 90, (2006), pp. 607–622. http://dx.doi.org/10.1016/j.solmat.2005.05.01010.1016/j.solmat.2005.05.010Search in Google Scholar

[5] M. Law, L.E. Greene, J.C. Johnson, R. Saykallyand and P.D. Yang: “Nanowire Dye-Sensitized Solar Cells”, Nat. Mater., Vol. 4, (2005), pp. 455–459. http://dx.doi.org/10.1038/nmat138710.1038/nmat1387Search in Google Scholar

[6] T. Koyanagi, K. Ookuma and A. Tanaka: “The changing nano-structure and crystal structure of heated nano-hollow titanium dioxide and it’s its application”, Mater. Integration, Vol. 18, (2005), pp. 20–25 (in Jpn.). Search in Google Scholar

[7] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese and C.A. Grimes: “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, Nano Lett., Vol. 6, (2006), pp. 215–218. http://dx.doi.org/10.1021/nl052099j10.1021/nl052099jSearch in Google Scholar

[8] Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida: “Dye-Sensitized TiO2 Nanotube Solar Cells: Fabrication and Electronic Characterization”, Phys. Chem. Chem. Phys., Vol. 7, (2005), pp. 4157–4163. http://dx.doi.org/10.1039/b511016e10.1039/b511016eSearch in Google Scholar

[9] M.D. Wei, Y. Konishi, H.S. Zhou, H. Sugihara and H. Arakawa: “Utilization of Titanate Nanotubes as an Electrode Material in Dye-Sensitized Solar Cells”, J. Electrochem. Soc., Vol. 153, (2006), pp. A1232–A1236. http://dx.doi.org/10.1149/1.219466710.1149/1.2194667Search in Google Scholar

[10] Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida and S. Yoshikawa: “Partially Nanowire-Structured TiO2 Electrode for Dye-Sensitized Solar Cells”, Cent. Eur. J. Chem., Vol. 4, (2006), pp. 476–488. http://dx.doi.org/10.2478/s11532-006-0015-310.2478/s11532-006-0015-3Search in Google Scholar

[11] K. Asagoe, Y. Suzuki, S. Ngamsinlapasathian and S. Yoshikawa: “TiO2-Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells”, J. Phys. Conf. Series, in press. Search in Google Scholar

[12] B. Tan and Y. Wu: “Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites”, J. Phys. Chem. B, Vol. 110, (2006), pp. 15932–15938. http://dx.doi.org/10.1021/jp063972n10.1021/jp063972nSearch in Google Scholar

[13] S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki and S. Yoshikawa: “Synthesis, Characterization, Photocatalytic Activity and Dye-sensitized Solar Cell Performance of Nanorods/Nanoparticles TiO2 with Mesoporous Structure”, J. Photochem. Photobio. A: Chem, Vol. 184, (2006) pp. 163–169. http://dx.doi.org/10.1016/j.jphotochem.2006.04.01010.1016/j.jphotochem.2006.04.010Search in Google Scholar

[14] R. Marchand, L. Brohan and M. Tournoux: “TiO2 (B) A New Form of Titanium Dioxide and the Potassium Octatitanate K2Ti8O17”, Mater. Res. Bull., Vol. 15, (1980), pp. 1129–1133. http://dx.doi.org/10.1016/0025-5408(80)90076-810.1016/0025-5408(80)90076-8Search in Google Scholar

[15] L. Brohan, A. Verbaere and M. Tournoux: “La Transformation TiO2 (B)-> Anatase”, Mater. Res. Bull., Vol. 17, (1982), pp. 355–361 (in French). http://dx.doi.org/10.1016/0025-5408(82)90085-X10.1016/0025-5408(82)90085-XSearch in Google Scholar

[16] M. Tournoux, R. Marchand and L. Brohan: “Layered K2Ti4O9 and the Open Metastable TiO2(B) structure”, Prog. Solid State Chem., Vol. 17, (1986) pp. 33–52. http://dx.doi.org/10.1016/0079-6786(86)90003-810.1016/0079-6786(86)90003-8Search in Google Scholar

[17] T.P. Feist, S.J. Mocarski, P.K. Davies, A.J. Jacobson and J.T. Lewandowski: “Formation of TiO2(B) by Proton Exchange and Thermolysis of Several Alkali Metal Titanate Structures”, Solid State Ionics, Vol. 28-30, (1988), pp. 1338–1343. http://dx.doi.org/10.1016/0167-2738(88)90383-910.1016/0167-2738(88)90383-9Search in Google Scholar

[18] T.P. Feist and P.K. Davies: “The Soft Chemical Synthesis of TiO2 (B) from Layered Titanates”, J. Solid State Chem., Vol. 101, (1992), pp. 275–295. http://dx.doi.org/10.1016/0022-4596(92)90184-W10.1016/0022-4596(92)90184-WSearch in Google Scholar

[19] J.F. Banfield, D.R. Veblen and D.J. Smith: “The Identification of Naturally Occurring TiO2 (B) by Structure Determination Using High-Resolution Electron Microscopy, Image Simulation, and Distance-Least-Squares Refinement”, Am. Mineral., Vol. 76, (1991), pp. 343–353. Search in Google Scholar

[20] J.F. Banfield and D.R. Veblen: “Conversion of Perovskite to Anatase and TiO2 (B): A TEM Study and the Use of Fundamental Building-Blocks for Understanding Relationships among the TiO2 Minerals”, Am. Mineral., Vol. 77, (1992), pp. 545–557. Search in Google Scholar

[21] J.F. Banfield, B.L. Bischoff and M.A. Anderson: “TiO2 Accessory Minerals: Coarsening, and Transformation Kinetics in Pure and Doped Synthetic Nanocrystalline Materials”, Chem. Geology, Vol. 110, (1993), pp. 211–231. http://dx.doi.org/10.1016/0009-2541(93)90255-H10.1016/0009-2541(93)90255-HSearch in Google Scholar

[22] S. Yin, Y. Fujishiro, J. Wu, M. Aki and T. Sato: “Synthesis and Photocatalytic Properties of Fibrous Titania by Solvothermal Reactions”, J. Mater. Proc. Tech., Vol. 137, (2003), pp. 45–48. http://dx.doi.org/10.1016/S0924-0136(02)01065-810.1016/S0924-0136(02)01065-8Search in Google Scholar

[23] G. Betz, H. Tributsch and R. Marchand: “Hydrogen Insertion (Intercalation) and Light Induced Proton Exchange at TiO2(B)-Electrodes”, J. Appl. Electrochem., Vol. 14, (1984), pp. 315–322. http://dx.doi.org/10.1007/BF0126993110.1007/BF01269931Search in Google Scholar

[24] H. Kawamura, Y. Muranushi, T. Miura and T. Kishi: “Lithium Insertion Characteristics Into TiO2 (B)”, Denki Kagaku, Vol. 59, (1991), pp. 766–769 (in Jpn.). Search in Google Scholar

[25] B. Zachau-christiansen, K. West, T. Jacobsen and S. Skaarup: “Lithium Insertion In Isomorphous MO2(B) Structures”, Solid State Ionics, Vol. 53–56, (1992), pp. 364–369. http://dx.doi.org/10.1016/0167-2738(92)90401-A10.1016/0167-2738(92)90401-ASearch in Google Scholar

[26] G. Nuspl, K. Yoshikawa and T. Yamabe: “Litium Intercalation in TiO2 Modifications”, J. Mater. Chem., Vol. 7, (1997), pp. 2529–2536. http://dx.doi.org/10.1039/a703935b10.1039/a703935bSearch in Google Scholar

[27] S.S. Lee and S.H. Byeon: “Structural and Morphological Behavior of TiO2 Rutile Obtained by Hydrolysis Reaction of Na2Ti3O7”, Bull. Korean Chem. Soc., Vol. 25, (2004) pp. 1051–1054. http://dx.doi.org/10.5012/bkcs.2004.25.7.105110.5012/bkcs.2004.25.7.1051Search in Google Scholar

[28] W. Sugimoto, O. Terabayashi, Y. Murakami and Y. Takasu: “Electrophoretic Deposition of Negatively Charged Tetratitanate Nanosheets and Transformation into Preferentially Oriented TiO2(B) Film”, J. Mater. Chem. Vol. 12, (2002), pp. 3814–3818. http://dx.doi.org/10.1039/b204185e10.1039/b204185eSearch in Google Scholar

[29] A.R. Armstrong, G. Armstrong, J. Canales and P.G. Bruce: “TiO2-B Nanowires”, Angew. Chem. Int. Ed., Vol. 43, (2004), pp. 2286–2288. http://dx.doi.org/10.1002/anie.20035357110.1002/anie.200353571Search in Google Scholar

[30] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: “Formation of Titanium Oxide Nanotube”, Langmuir, Vol. 14, (1998), pp. 3160–3163. http://dx.doi.org/10.1021/la971381610.1021/la9713816Search in Google Scholar

[31] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., Vol. 11, (1999), pp. 1307–1311. http://dx.doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-HSearch in Google Scholar

[32] A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia and P.G. Bruce: “Lithium-Ion Intercalation into TiO2-B Nanowires”, Adv. Mater., Vol. 17, (2005), pp. 862–865. http://dx.doi.org/10.1002/adma.20040079510.1002/adma.200400795Search in Google Scholar

[33] A.R. Armstrong, G. Armstrong, J. Canales and P.G. Bruce: “TiO2-B Nanowires as Negative Electrodes for Rechargeable Lithium Batteries,” J. Power Sources, Vol. 146, (2005), pp. 501–506. http://dx.doi.org/10.1016/j.jpowsour.2005.03.05710.1016/j.jpowsour.2005.03.057Search in Google Scholar

[34] L. Kavan, M. Kalbac, M. Zukalova, I. Exnar, V. Lorenzen, R. Nesper and M. Grätzel: “Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth”, Chem. Mater., Vol. 16, (2004), pp. 477–485. http://dx.doi.org/10.1021/cm035046g10.1021/cm035046gSearch in Google Scholar

[35] M. Zukalová, M. Kalbá, L. Kavan, I. Exnar, and M. Grätzel: “Pseudocapacitive Lithium Storage in TiO2(B),” Chem. Mater., Vol. 17, (2005), pp. 1248–1255. http://dx.doi.org/10.1021/cm048249t10.1021/cm048249tSearch in Google Scholar

[36] A.R. Armstrong, G. Armstrong, J. Canales and P.G. Bruce: “Nanotubes with the TiO2-B Structure”, Chem, Comm., Vol. 2005, (2005), pp. 2454–2456. http://dx.doi.org/10.1039/b501883h10.1039/b501883hSearch in Google Scholar

[37] G. Armstrong, A. R. Armstrong, J. Canales and P.G. Bruce: “TiO2(B) Nanotubes as Negative Electrodes for Rechargeable Lithium Batteries”, Electrochem. Solid State Lett., Vol. 9, (2006), pp. A139–A143. http://dx.doi.org/10.1149/1.216232710.1149/1.2162327Search in Google Scholar

[38] P. G. Bruce: “Energy Materials”, Solid State Sci., Vol. 7, (2005), pp. 1456–1463. http://dx.doi.org/10.1016/j.solidstatesciences.2005.04.01810.1016/j.solidstatesciences.2005.04.018Search in Google Scholar

[39] Y. Suzuki and S. Yoshikawa: “Synthesis and Thermal Analyses of TiO2-Derived Nanotubes Prepared by the Hydrothermal Method”, J. Mater. Res., Vol. 19, (2004), pp. 982–985. http://dx.doi.org/10.1557/JMR.2004.012810.1557/JMR.2004.0128Search in Google Scholar

[40] Y. Suzuki, S. Pavasupree, S. Yoshikawa and R. Kawahata: “Natural Rutile-Derived Titanate Nanofibers Prepared by Direct Hydrothermal Processing”, J. Mater. Res., Vol. 20, (2005), pp. 1063–1070. http://dx.doi.org/10.1557/JMR.2005.013510.1557/JMR.2005.0135Search in Google Scholar

[41] R. Yoshida, Y. Suzuki and S. Yoshikawa: “Effects of Synthetic Conditions and Heat Treatment on the Structure of Partially Ion-Exchanged Titanate Nanotubes”, Mater. Chem. Phys., Vol. 91, (2005), pp. 409–416. http://dx.doi.org/10.1016/j.matchemphys.2004.12.01010.1016/j.matchemphys.2004.12.010Search in Google Scholar

[42] R. Yoshida, Y. Suzuki and S. Yoshikawa: “Synthesis of TiO2(B) Nanowires and TiO2 Anatase Nanowires by Hydrothermal and Post-Heat Treatments”, J. Solid State Chem., Vol. 178, (2005), pp. 2179–2185. http://dx.doi.org/10.1016/j.jssc.2005.04.02510.1016/j.jssc.2005.04.025Search in Google Scholar

[43] S. Pavasupree, Y. Suzuki, S. Yoshikawa and R. Kawahata: “Synthesis of Titanate, TiO2 (B), and Anatase TiO2 Nanofibers from Natural Rutile Sand”, J. Solid State Chem., Vol. 178, (2005), pp. 3110–3116. http://dx.doi.org/10.1016/j.jssc.2005.07.02210.1016/j.jssc.2005.07.022Search in Google Scholar

[44] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel: “Conversion of Light to Electricity by cis-X2bis(2,2’-Bipyridyl-4,4’-Dicarboxylate) Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc., Vol. 115, (1993), pp. 6382–6390. http://dx.doi.org/10.1021/ja00067a06310.1021/ja00067a063Search in Google Scholar

[45] L. R. Wallenberg, M. Sanati and A. Andersson: “A High-Resolution Electron-Microscopy Investigation of TiO2(B)-Supported Vanadium-Oxide Catalysts”, J. Catal., Vol. 126, (1990), pp. 246–260. http://dx.doi.org/10.1016/0021-9517(90)90063-P10.1016/0021-9517(90)90063-PSearch in Google Scholar

Published Online: 2007-1-20
Published in Print: 2007-6-1

© 2006 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-007-0001-4/html
Scroll to top button