Open Access

Water’s path from moss to soil: A multi-methodological study on water absorption and evaporation of soil-moss combinations


Cite

Mosses are often overlooked; however, they are important for soil-atmosphere interfaces with regard to water exchange. This study investigated the influence of moss structural traits on maximum water storage capacities (WSCmax) and evaporation rates, and species-specific effects on water absorption and evaporation patterns in moss layers, moss-soil-interfaces and soil substrates using biocrust wetness probes. Five moss species typical for Central European temperate forests were selected: field-collected Brachythecium rutabulum, Eurhynchium striatum, Oxyrrhynchium hians and Plagiomnium undulatum; and laboratory-cultivated Amblystegium serpens and Oxyrrhynchium hians.

WSCmax ranged from 14.10 g g−1 for Amblystegium serpens (Lab) to 7.31 g g−1 for Plagiomnium undulatum when immersed in water, and 11.04 g g−1 for Oxyrrhynchium hians (Lab) to 7.90 g g−1 for Oxyrrhynchium hians when sprayed, due to different morphologies depending on the growing location. Structural traits such as high leaf frequencies and small leaf areas increased WSCmax. In terms of evaporation, leaf frequency displayed a positive correlation with evaporation, while leaf area index showed a negative correlation. Moisture alterations during watering and desiccation were largely controlled by species/substrate-specific patterns. Generally, moss cover prevented desiccation of soil surfaces and was not a barrier to infiltration. To understand water’s path from moss to soil, this study made a first contribution.

eISSN:
1338-4333
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other