Tribology Online
Online ISSN : 1881-2198
ISSN-L : 1881-218X
Article
Evaluation of Friction Durability of Extremely Thin Diamond-Like Carbon Films by Statistical Cluster and Regression Analyses of Friction Coefficient
Shojiro MiyakeMasatoshi Miyake
Author information
JOURNAL OPEN ACCESS

2021 Volume 16 Issue 2 Pages 113-124

Details
Abstract

We studied the tribological properties of extremely thin DLC films at high temperature. The films were deposited on nickel phosphorus (NiP) or Si substrates using filtered cathodic vacuum arc (FCVA) or plasma chemical vapor deposition (P-CVD). The nanoindentation hardness values and elastic moduli of the films were lower on NiP than on Si. The nanofriction force of the FCVA-DLC film on NiP was low at room temperature, but very high at high temperature. In this hard film, the lubricous adsorbate was removed by sliding at high temperature, making it easily damaged through the large deformation of NiP. In contrast, the friction force of the P-CVD-DLC films on both substrates was low at high temperatures. In this case, the lubricous tribochemical products from the P-CVD-DLC film reduced friction and wear. The friction map dependences on load and number of reciprocating cycles were evaluated using a friction test and statistical cluster analysis. The friction durability of both films depended more strongly on load on NiP than on Si, with the friction coefficients on Si being almost independent of load. At high temperatures and load, the durability of the FCVA-DLC film on NiP decreased and this film was easily damaged.

Content from these authors
© 2021 by Japanese Society of Tribologists

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top