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Abstract. In the equivalent transformation (ET) computation model, a specification is
a set of problems, a program is a set of prioritized rewriting rules, and computation con-
sists in successive reduction of problems by rule application. As long as answer-preserving
rewriting rules, called ET rules, are used, correct computation results are guaranteed. In
this paper, a framework for program synthesis, called the squeeze method, in the ET model
is discussed. The method receives a problem as an input, and generates a set of priori-
tized rewriting rules as an output program. It constructs a program by accumulation of
rules one by one on demand, with the goal of producing a correct and efficient program.
By using the conventional resolution-based computation theory, such an effective method
of program construction is not achievable due to the lack of a large variety of ET rules.
Keywords: Program synthesis, Incremental program construction, Equivalent transfor-
mation rule, Rule generation, Prioritized ET rules

1. Introduction. Equivalent transformation (ET) is one of the most fundamental prin-
ciples of computation, and it provides a simple and general basis for verification of compu-
tation correctness. Computation by ET was initially implemented in experimental natural
language understanding systems during 1990-1992 [1], and the idea was further developed
into a new computation model, called the ET model [2, 3, 4]. A program in this model is
a set of prioritized rewriting rules for answer-preserving transformation of problems, and
a problem solving process consists in successive rule application. In contrast with declar-
ative computation paradigms such as logic programming [5] and functional programming
[6], programs are clearly separated from a declarative description in a specification in the
ET model. A specification specifies a set of problems of interest. From a specification,
answer-preserving rewriting rules, called ET rules, are generated.

In the ET model, program synthesis is defined as generation of a set of prioritized
ET rules from a specification. A demand-driven method for program synthesis, called the
squeeze method, is employed. Based on some heuristics, which are given as its parameters,
the method suggests patterns of atoms to be transformed in a problem solving process,
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and uses meta-computation techniques [7] for automatic generation of ET rules for the
suggested atom patterns.
Program synthesis using the squeeze method is superior to the one in logic program-

ming. Given an input logical problem such as a proof problem and a QA problem, the
squeeze method tries to generate a program to solve the input problem. The convention-
al concept of computation in logical problem solving is based on procedural reading of
logical formulas. A set of clauses is identified as a program and is called a logic program.
The concept of a logic program is different from that of a program in the ET approach.
Typically, SLD resolution is applied to a set of clauses to solve proof problems and QA
problems. However, SLD resolution cannot solve all logical problems. One typical exam-
ple is the pal-pal QA problem (Section 2), which is represented by a set of definite clauses.
We revealed that the pal-pal problem can never be solved in finite time by using SLD
resolution [8, 9]. Simple resolution-based computation without the possibility of using
many kinds of ET rules is the major reason for the computational limitations of conven-
tional logical reasoning and answer finding. Program transformation has been used for
improving the practical solvability of conventional logic programs [10, 11, 12]. However,
program transformation cannot generate a program for solving the pal-pal QA problem.
The squeeze method in the ET paradigm overcomes the difficulty of conventional logic
programming. All logical problems that can be solved in conventional logic programming
can also be solved by the squeeze method straightforwardly. The squeeze method can
solve strictly a larger class of logical problems compared to that of logical problems that
can be solved by the techniques in conventional logic programming.
The paper progresses from here as follows. Section 2 recalls model-intersection (MI)

problems based on clauses and if-and-only-if formulas (iff -formulas), and provides an ex-
ample, called the pal-pal problem, which is used as the running example in subsequent
sections. Section 3 introduces the squeeze method, which generates a program from a
given problem formulated on clauses and iff -formulas. Section 4 illustrates the construc-
tion of a program for solving the pal-pal problem. Section 5 explains a method of rule
generation by using meta-computation and induction, where a non-splitting ET rule is
obtained for the pal-pal problem. Section 6 devises a more efficient solution for the pal-pal
problem by generation of non-splitting rules by meta-computation. Section 7 compares
the ET framework with the conventional resolution-based computation framework from
the viewpoint of the squeeze method. Section 8 concludes the paper.

2. Formalization as MI Problems with iff -Formulas. We review MI problems
based on descriptions consisting of clauses and iff -formulas, and introduce a running
example, which will be used in subsequent sections.

2.1. The pal-pal QA problem. Assume as background knowledge the set consisting of
the three iff -formulas below, where pal, rv, eq, and ap stand for “palindrome”, “reverse”,
“equal”, and “append”, respectively.

(1) ∀x : pal(x)↔ rv(x, x).
(2) ∀x, ∀y : rv(x, y)↔

((eq(x, [ ]) ∧ eq(y, [ ])) ∨ ∃a, ∃w, ∃u : (eq(x, [a|w]) ∧ rv(w, u) ∧ ap(u, [a], y))).
(3) ∀x, ∀y, ∀z : ap(x, y, z)↔

((eq(x, [ ]) ∧ eq(y, z)) ∨ ∃a, ∃w, ∃u : (eq(x, [a|w]) ∧ eq(z, [a|u]) ∧ ap(w, y, u))).

These formulas are referred to as iff (pal(x)), iff (rv(x, y)), and iff (ap(x, y, z)), respectively.
Let E0 be the set consisting of these three formulas.
Consider the problem “find every ground list t of ground terms such that the two

lists [1|t] and [2|t] are palindromes”, which is called the pal-pal query-answering (QA)
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problem and is referred to as prb1 in later sections. Let E1 be the first-order formula
∀x : (pal ([1|x]) ∧ pal ([2|x])→ ans(x)).

2.2. Existence-finding formalization. Given a logical formula E, let Models (E) de-
note the set of all models of E. Referring to E0 and E1 in Section 2.1, we formulate the
pal-pal QA problem by

∩
Models (E0 ∧E1). Then the answer to this pal-pal QA problem

is formalized as
answerpal-pal = φ1

(∩
Models (E0 ∧ E1)

)
,

where, letting Gu be the set of all ground user-defined atoms and Gt the set of all ground
terms, φ1 is defined as a mapping from the power set of Gu to Gt such that for each
G ⊆ Gu, φ1(G) = {t|ans(t) ∈ G}.

2.3. MI problems in triple forms on Pair . We use clauses and iff -formulas for
representation of problems. Formally, Pair is defined as the set of all pairs ⟨Cs, E⟩ such
that Cs is a set of clauses and E a set of iff -formulas. Let CLS be the set of all clauses and
IFF the set of all iff -formulas. We define a model-intersection (MI) problem on the pair
space Pair as a triple ⟨Cs, E, φ⟩, where (i) Cs ⊆ CLS, (ii) E ⊆ IFF, and (iii) φ is a partial
mapping from the power set of Gu to some set W , which is called an extraction mapping.
The answer to the MI problem ⟨Cs, E, φ⟩, denoted by ansMI(Cs, E, φ), is defined by

ansMI(Cs, E, φ) = φ
(∩

Models (Fol(Cs) ∧ E)
)
,

where Fol(Cs) is the first-order formula that is equivalent to Cs.

2.4. Separation of the query part in the clause part. The notion of an independent
extraction mapping is next recalled [13]. Given a set P of predicates, let GAtoms (P )
denote the set of all ground atoms in Gu the predicates of which belong to P . An extraction
mapping φ is said to be independent of a set P of predicates iff for any G1, G2 ⊆ Gu, if
(G1 −G2) ∪ (G2 −G1) ⊆ GAtoms (P ), then φ(G1) = φ(G2).

Given an MI problem ⟨Cs, E, φ⟩, we assume that we have a query part Q of the clause
set Cs, i.e., Cs = Q ∪ Cs′, where Cs′ is some clause set, such that φ is independent of
the set of all predicates occurring in Cs′ and E. For example, the pal-pal QA problem in
Section 2.1 is formalized as ⟨Cs1, E0, φ1⟩, where
1) Cs1 = Q1 ∪ Cs′1,
2) Q1 is the singleton clause set {(ans(x)← pal ([1|x]), pal ([2|x]))},
3) Cs′1 = ∅,
4) E0 is the set of iff -formulas {iff (pal(x)), iff (rv(x, y)), iff (ap(x, y, z))}, and
5) φ1 is a mapping that associates with any G ⊆ Gu the set of all ground terms t such

that ans(t) ∈ G.

Obviously, φ1 is independent of the set of all predicates that occur in Cs′1 and E0.

3. Program Construction Using the Squeeze Method. We introduce the squeeze
method for producing a program from a given problem that is formulated on a pair of a
set of clauses and a set of iff -formulas.

3.1. ET rules and a solution. A program synthesis problem is described as follows:
Given a specification, construct a program that can solve correctly as many problems as
possible in the specification. A specification is regarded here as a set of problems.

Based on the set E0 of iff -formulas (see Section 2.1), the following ET rules may be
used to solve the pal-pal proof problem [8]:
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rpal: pal(∗x)⇒ rv(∗x, ∗x).
rrv0 : rv(∗x, ∗y)

⇒ {=(∗x, [ ]),=(∗y, [ ])};
⇒ {=(∗x, [∗a|∗v])}, rv(∗v, ∗w), ap(∗w, [∗a], ∗y).

rap0 : ap(∗x, ∗y, ∗z)
⇒ {=(∗x, [ ]),=(∗y, ∗z)};
⇒ {=(∗x, [∗a|∗v]),=(∗z, [∗a|∗w])}, ap(∗v, ∗y, ∗w).

However, these ET rules cannot solve the pal-pal QA problem successfully [9]. When
these ET rules are applied to the pal-pal QA problem, we have infinite computation that
never reaches the correct answer. The program {rpal, rrv0 , rap0} cannot solve the pal-pal
QA problem. Generation of useful ET rules is the core of this problem solving. We will
propose a method for generating useful ET rules for solving a given problem.

3.2. The squeeze method. In the ET model, a specification is a set of problems, a
program is a set of prioritized ET rules, and computation consists in successive reduction
of problems by rule application. Program synthesis can be viewed as a search for a suffi-
ciently efficient program that is correct with respect to a given specification. We propose
a method of program synthesis, called the squeeze method, in the ET model. The method
receives a problem as an input, accumulates ET rules and specifies their priorities, applies
the obtained ET rules for transforming the input problem under the rule priorities, and
finally produces a set of prioritized ET rules as an output program.
Consider MI problems on the pair space Pair that were formulated in Sections 2.3 and

2.4, where an MI problem is represented as a triple ⟨Q ∪ Cs, E, φ⟩. To ensure correct
computation results, only ET rules will be generated. In this paper, we will generate ET
rules that do not change E ⊆ IFF and φ. Such ET rules should satisfy the following
condition: For any clause sets Q1, Q2, Cs1 and Cs2, if a rule transforms Q1 and Cs1 into
Q2 and Cs2, then

φ
(∩

Models (Fol(Q1) ∧ Fol(Cs1) ∧ E)
)
= φ

(∩
Models (Fol(Q2) ∧ Fol(Cs2) ∧ E)

)
.

Meta-computation is an algorithm for generating this class of ET rules [7, 14]. Rule
generation based on meta-computation is used by the squeeze method. Given a set E of
iff -formulas and an atom pattern as input, the meta-computation algorithm automati-
cally generates an ET rule for transforming a meta-description that is determined by the
input atom pattern. In order to obtain an efficient program, rules with fewer bodies are
preferable as they typically lead to shorter transformation sequences. Rules are priori-
tized accordingly. By the “demand-driven” characteristic of the method, redundancy in
a resulting program tends to be minimized.
The squeeze method constructs a program by accumulation of rules one by one on

demand, with the goal of producing a correct and efficient program. It is outlined as
follows:

repeat
1. run the current program under control specified by rule priority
2. if some obtained final clause is not a unit clause

begin
2.1 select one or more atoms in the body of a non-unit

final clause
2.2 determine a general pattern of the selected atoms
2.3 generate a rewriting rule for transforming atoms that

conform to the obtained pattern
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2.4 assign priority to the obtained rule
2.5 add the obtained rule to the current program
end

until the obtained final clauses are all unit clauses

Heuristics are used for suggesting a suitable rule to be generated and added in each
iteration. They are given through the following three parameters:

[RUN] Control of execution at Step 1.
[TAR] Guidelines on selection of target atoms at Step 2.1.
[PAT] Guidelines on determination of a general atom pattern at Step 2.2.

4. Program Construction for Solving the Problem prb1. For solving the pal-pal
QA problem prb1 (see Section 2.1), construction of a program, named PA, which consists of
the rewriting rules in Figure 1, will now be illustrated. The rewriting rules in Figure 1 are
guaranteed to be correct ET rules, which also guarantee the correctness of the solution
shown in Table 1. Construction of this solution for prb1 using the squeeze method is
summarized as

Problem prb1 ⇒ Meta-meta-rules⇒ Rewriting rules in Figure 1

⇒ Computation in Table 1,

where the meta-meta-rules are shown in Figure 2 and Figure 3.

rpal: pal(∗x)⇒ rv(∗x, ∗x).
rrv1 : rv([∗a|∗x], ∗y)⇒ rv(∗x, ∗v), ap(∗v, [∗a], ∗y).
rrv2 : rv(∗x, ∗y), rv(∗x, ∗z)⇒ {=(∗y, ∗z)}, rv(∗x, ∗y).
rap1 : ap(∗x, ∗y, [∗a|∗z])

⇒ {=(∗x, [ ]),=(∗y, [∗a|∗z])};
⇒ {=(∗x, [∗a|∗v])}, ap(∗v, ∗y, ∗z).

rrv3 : rv(∗x, [∗a|∗y]) ⇒ {=(∗x, [∗u|∗v])}, rv(∗v, ∗w), ap(∗w, [∗u], [∗a|∗y]).
rap2 : ap(∗x, [∗a], [∗b, ∗c|∗y]) ⇒ {=(∗x, [∗b|∗v])}, ap(∗v, [∗a], [∗c|∗y]).
rap3 : ap(∗x, [∗a], [∗b])⇒ {=(∗x, [ ]),=(∗a, ∗b)}.
rrv4 : rv([ ], ∗x)⇒ {=(∗x, [ ])}.

Figure 1. PA: Rewriting rules for solving prb1

4.1. Parameters for constructing the program PA. The following parameters are
used:

[RUN] Usual rule selection based on rule priority is employed under one constraint:
employment of low-priority rules should be minimized.

[TAR] One or more atoms are selected each time, using the following guidelines:
• Select an atom that has a specific structure (e.g., ap([1|x], y, z) is preferable
to ap(x, y, z) since [1|x] is more specific than x).
• Select atoms that have common variables (e.g., ap(x, y, z) and ap(x, v, w)
with x being a common variable).
• A smaller number of selected atoms is preferable for efficient rule application.

[PAT] A more general pattern is preferable as long as it does not lead to a rule with a
larger number of bodies.
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Table 1. Computation of PA for solving prb1

# State Rule

1
{
ans(x)← pal([1|x]), pal([2|x])

}
rpal

2
{
ans(x)← rv([1|x], [1|x]), pal([2|x])

}
rpal

3
{
ans(x)← rv([1|x], [1|x]), rv([2|x], [2|x])

}
rrv1

4
{
ans(x)← rv(x,m), ap(m, [1], [1|x]), rrv1

rv([2|x], [2|x])
}

5
{
ans(x)← rv(x, y1), ap(y1, [1], [1|x]), rrv2

rv(x, y2), ap(y2, [2], [2|x])
}

6
{
ans(x)← rv(x,m), ap(m, [1], [1|x]), rap1

ap(m, [2], [2|x])
}

7
{
ans([ ])← rv([ ], [ ]), ap([ ], [2], [2]), rrv3

ans(x)← rv(x, [1|y]), ap(y, [1], x),

ap([1|y], [2], [2|x])
}

8
{
ans([ ])← rv([ ], [ ]), ap([ ], [2], [2]), rap2

ans([v|x])← rv(x, y),

ap(y, [v], [1|z]),

ap(z, [1], [v|x]),

ap([1|z], [2], [2, v|x])
}

9
{
ans([ ])← rv([ ], [ ]), ap([ ], [2], [2])

}
rap3

10
{
ans([ ])← rv([ ], [ ])

}
rrv4

11 {ans([ ])←} –

pal(∗x)⇒ rv(∗x, ∗x).
rv([ ], ∗x)⇒ eq(∗x, [ ]).
rv([∗a|∗x], ∗y)⇒ rv(∗x, ∗m), ap(∗m, [∗a], ∗y).
ap([ ], ∗y, ∗z)⇒ {=(∗y ∗ z)}.
ap([∗a|∗x], ∗y, ∗z)⇒ {=(∗z, [∗a|∗z1])}, ap(∗x, ∗y, ∗z1).
ap

(
∗pk1, ∗q, ∗r

)
⇒ eq(∗p, [∗a|∗x]), eq(∗r, [∗a|∗z]), ap(∗x, ∗q, ∗z).

rv
(
∗pk1, ∗q

)
⇒ eq(∗p, [∗a|∗x]), rv(∗x, ∗r), ap(∗r, [∗a], ∗q).

Figure 2. Meta-meta-rules for user-defined predicates
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eq
(
∗x1, ∗y2

)
⇒ {(false)}.

eq
(
∗x2, ∗y1

)
⇒ {(false)}.

eq
(
∗xk1, [ ]

)
⇒ {(false)}.

eq
(
[ ], ∗xk1

)
⇒ {(false)}.

eq([∗a|∗b], [ ])⇒ {(false)}.
eq([ ], [∗a|∗b])⇒ {(false)}.
eq(∗x, [ ]), eq(∗x, [∗a|∗y])⇒ {(false)}.
eq(∗xa, [ ])⇒ {rmInfo(∗x),=(∗x, [ ])}.
eq([ ], ∗xa)⇒ {rmInfo(∗x),=(∗x, [ ])}.
eq (∗xa, [∗a|∗b])⇒ {rmInfo(∗x),=(∗x, [∗a|∗b])}.
eq ([∗a|∗b], ∗xa)⇒ {rmInfo(∗x),=(∗x, [∗a|∗b])}.
eq (∗xa, ∗ya)⇒ {rmInfo(∗x), rmInfo(∗y),=(∗x, ∗y)}.
eq

(
∗xk, ∗yk

)
⇒ {rmInfo(∗x), rmInfo(∗y),=(∗x, ∗y)}.

eq
(
∗xk1, [∗a|∗b]

)
, {pvar(∗a), pvar(∗b)}

⇒ {putInfo(∗a, a), putInfo(∗b, k), rmInfo(∗x),=(∗x, [∗a|∗b])}.
eq([∗a|∗x], [∗b|∗y])⇒ eq(∗a, ∗b), eq(∗x, ∗y).
eq(∗v, ∗a), {pvar(∗v)} ⇒ {=(∗v, ∗a)}.
eq(∗a, ∗v), {pvar(∗v)} ⇒ {=(∗v, ∗a)}.
eq(∗a, ∗a)⇒.

Figure 3. Meta-meta-rules for the eq predicate

Table 2. Constructing PA (with reference to the states in Table 1)

Iteration Last state Atom pattern Rule obtained Priority assigned

1st 1 pal(∗x) rpal PR-1

2nd 3 rv([∗a|∗x], ∗y) rrv1 PR-1

3rd 5 rv(∗x, ∗y), rv(∗x, ∗z) rrv2 PR-1

4th 6 ap(∗x, ∗y, [∗a|∗z]) rap1 PR-2

5th 7 rv(∗x, [∗a|∗y]) rrv3 PR-1

6th 8 ap(∗x, [∗a], [∗b, ∗c|∗y]) rap2 PR-1

7th 9 ap(∗x, [∗a], [∗b]) rap3 PR-1

8th 10 rv([ ], ∗x) rrv4 PR-1

9th 11 – – –

4.2. Iterations generating the program PA. With the above parameters, the squeeze
method produces the program PA consisting of the rules in Figure 1 within nine iterations
as shown in Table 1 and Table 2. All rules in Figure 1 can be automatically generated
by using meta-computation and the correctness of the generated rules is guaranteed.
Generation of these ET rules by meta-computation is explained in Section 5 and Section 6.
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The 1st iteration: The initial program contains no rule. Running the program makes no
change to the initial problem prb1. Either pal([1|x]) or pal([2|x]) may be selected,
and the atom pattern pal(∗x) is determined. An ET rule for this pattern, named
rpal, is generated. Since rpal has a single body, assign a high priority level, say PR-1,
to it.

The 2nd iteration: The current program contains only rpal. Following the first two
transformation steps in Table 1, running this program yields the third state in
the table as the last state. The two body atoms in this state have the same pat-
tern, and one of them is selected as the target atom. Set rv([∗a|∗x], ∗y) as the
target atom pattern. Generate an ET rule for this pattern, and rrv1 is obtained.
Since rrv1 has a single body, assign the priority level PR-1 to it.

The 3rd iteration: Following the first four transformation steps in Table 1, running the
current program results in the fifth state in the table. Select the two rv-atoms in
this state as the target atoms, and set the pair of rv(∗x, ∗y) and rv(∗x, ∗z) as the
target pattern. Devise the multi-head ET rule rrv2 for it. Again assign the priority
level PR-1 to this rule.

The 4th iteration: Following the first five transformation steps in Table 1, the current
program now yields the sixth state as the last state. Select the first ap-atom in
this state as the target atom, and set ap(∗x, ∗y, [∗a|∗z]) as the target atom pattern.
Generate an ET rule for this pattern, and the rule rap1 is obtained. Since this rule
has more than one body, assign a lower priority level, say PR-2, to it.

The 5th iteration: By the first six transformation steps in Table 1, the current program
transforms prb1 into the seventh state in the table. By the constraint imposed upon
by the parameter [RUN], although this state can be transformed further using rap1 ,
this transformation step is not made. Instead, a new rule is constructed. The first
rv-atom in the second clause of this state is selected as the target atom, and the
atom pattern rv(∗x, [∗a|∗y]) is determined. The ET rule rrv3 is then generated, and
the priority level PR-1 is assigned to it.

The 6th iteration onwards: By following the squeeze method three more iterations, the
ET rules rap2 , rap3 , and rrv4 are generated and added to the program in succession.
The priority level PR-1 is given to each of them. When running the resulting
program with the input problem prb1, a problem consisting only of unit clauses is
obtained, and the construction ends.

5. Inductive Generation of Multi-head Rules. We explain a method of generating
multi-head ET rules by using meta-computation and induction, which is one of the key
techniques for solving logical problems. By induction, results of infinitely many meta-
computations are combined into a process of making one rewriting rule.

5.1. Information-attached variables in meta-clauses. Ameta-clause is a clause that
represents a set of clauses by instantiation. For representing a meta-clause, we can use
information-attached variables. For instance, C =

(
h
(
Ek1, F a

)
← ap

(
Gk, F a, D

))
is a

meta-clause, where Ek1, F a and Gk are information-attached variables. Ek1 unifies with
any list of length k + 1, F a any first-order term, and Gk any list of length k. By instan-
tiation, C represents a set of clauses. A meta-clause is transformed by meta-meta-rules.
For instance,

eq
(
∗xk1, [∗a|∗b]

)
, {pvar(∗a), pvar(∗b)}

⇒ {putInfo(∗a, a), putInfo(∗b, k), rmInfo(∗x),=(∗x, [∗a|∗b])}
is a meta-meta-rule that is applicable to an eq-meta-atom eq(t1, t2) if there are a pure
variable V and a substitution θ such that t1 is an information-attached variable V k1,
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V = ∗xθ, t2 = [∗a|∗b]θ, ∗aθ is a pure variable, and ∗bθ is a pure variable. After the
application of this meta-meta-rule, the eq-meta-atom is removed with the following side
effects: (i) the pure variable V is unified with the list [∗a|∗b]θ, (ii) a is attached to the
variable ∗aθ, and (iii) k is attached to the variable ∗bθ. Reduction of a list of length k+1
to a list of length k can be realized by this meta-meta-rule.

5.2. Meta-computation seeking for the rv function rule. Construction of the
multi-head rule rrv2 by meta-computation is summarized as

Problem prb1 ⇒ Meta-meta-rules Rmm ⇒ Rewriting rule rrv2

where Rmm includes, not only basic meta-meta-rules in Figure 2 and Figure 3, the ap
function meta-meta-rule that is obtained in Section 5.3 by lift-up of correct rewriting
rules.

When we reach the fifth state in Table 1, assume that we take the two rv-atoms in the
clause body as target atoms and we try to generate a non-splitting ET rule called the rv
function rule:

rv(∗x, ∗y), rv(∗x, ∗z)⇒ {=(∗y, ∗z)}, rv(∗x, ∗y).
Let En be an information-attached variable that matches a list of length n, where

n = 0, 1, 2, . . .. Note that E0 = [ ] and if n > 0, then En is a non-empty list. Let rulen be
the rewriting rule

rv(En, F ), rv(En, H)⇒ rv(En, F ), eq(F,H).

Then the rv function rule is an ET rule if rulen is an ET rule for all n = 0, 1, 2, . . .. We
will prove that these rules are ET rules by induction.

5.2.1. Base case. Letting n = 0, we have the base case:

rv(E0, F ), rv(E0, H)⇒ rv(E0, F ), eq(F,H).

The correctness of this rule is obvious since rv(E0, X) implies X = [ ].

5.2.2. Inductive case. Let rulek be the rewriting rule

rv
(
Ek, F

)
, rv

(
Ek, H

)
⇒ rv

(
Ek, F

)
, eq(F,H).

Assume that rulek is an ET rule, which is an inductive assumption. We start meta-
computation from the following initial meta-clause:

h(Ca, Da)← rv
(
Ek1, Ca

)
, rv

(
Ek1, Da

)
.

Note that the meta-atom h(Ca, Da) in the left-hand side of this meta-clause can be used for
monitoring how the variables Ca and Da are changed. When Ca and Da are changed into
the same meta-term by meta-computation, we can obtain the meta-atom eq(Ca, Da). For
meta-clause transformation, we use the correct meta-meta-rules in Figure 2 and Figure 3.
By the last meta-meta-rule in Figure 2 and the meta-meta-rules in Figure 3, the meta-
clause with a list of length k+1 above is transformed into the following meta-clause with
a list of length k:

h(Ca, Da)← rv
(
Ek, F

)
, ap(F, [Ga], Ca), rv

(
Ek, H

)
, ap(H, [Ga], Da).

By applying the rule rulek in the inductive assumption, we obtain the meta-clause

h(Ca, Da)← rv
(
Ek, F

)
, ap(F, [Ga], Ca), eq(F,H), ap(H, [Ga], Da).

By further transformation, we reach the meta-clause

h(Ca, Da)← rv
(
Ek, F

)
, ap(F, [Ga], Ca), ap(F, [Ga], Da).

Assume that we have the ap function meta-meta-rule

ap(∗x, ∗y, ∗z1), ap(∗x, ∗y, ∗z2)⇒ ap(∗x, ∗y, ∗z1), eq(∗z1, ∗z2).
By applying this ap function meta-meta-rule, we obtain the meta-clause
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h(Ca, Da)← rv
(
Ek, F

)
, ap(F, [Ga], Ca), eq(Ca, Da).

The meta-atom eq(Ca, Da) in the right-hand side can be removed by a meta-meta-rule
with the unification of the variables C and D. Finally, we reach the meta-clause

h(Ca, Ca)← rv
(
Ek, F

)
, ap(F, [Ga], Ca).

Meta-computation now terminates since no existing meta-meta-rule is applicable to this
meta-clause. The two meta-atoms rv

(
Ek, F

)
, ap(F, [Ga], Ca) in the right-hand side of the

meta-clause are not taken to make a new rewriting rule. Instead of these meta-atoms,
special attention is given to the first and the second arguments of the h-meta-atom in
the left-hand side. Since they are the same, we reconsider the initial meta-clause and
then derive a new rewriting rule by imposing an equality constraint using the meta-atom
eq(F,H), i.e.,

rv
(
Ek1, F

)
, rv

(
Ek1, H

)
⇒ rv

(
Ek1, F

)
, rv

(
Ek1, H

)
, eq(F,H).

By factoring the two rv-meta-atoms in the right-hand side of this rule in the presence of
eq(F,H), we obtain rulek+1, i.e.,

rv
(
Ek1, F

)
, rv

(
Ek1, H

)
⇒ rv

(
Ek1, F

)
, eq(F,H),

which is an ET rule since it is obtained by meta-computation using only correct meta-
meta-rules.

5.2.3. Making an ET rule by induction. From the results of the base case and the inductive
case above, rulen is an ET rule for n = 0, 1, 2, . . .. Hence, we have the rewriting rule

rv(∗x, ∗y), rv(∗x, ∗z)⇒ rv(∗x, ∗y), eq(∗y, ∗z).
By moving the eq-meta-atom to an execution part, we derive the rv function rule rrv2 in
Figure 1, i.e.,

rv(∗x, ∗y), rv(∗x, ∗z)⇒ {=(∗y, ∗z)}, rv(∗x, ∗y).

5.3. Meta-computation seeking for the ap function meta-meta-rule. In the meta-
computation in Section 5.2, we assumed the availability of the ap function meta-meta-rule

ap(∗x, ∗y, ∗z1), ap(∗x, ∗y, ∗z2)⇒ ap(∗x, ∗y, ∗z1), eq(∗z1, ∗z2).
Here we try to generate this meta-meta-rule.

5.3.1. Base case. The rewriting rule

ap(X0, Y a, Aa), ap(X0, Y a, Ba)⇒ ap(X0, Y a, Aa), eq(Aa, Ba)

is an ET rule since X0 = [ ] and Y a = Aa = Ba.

5.3.2. Inductive case. We start meta-computation from the initial meta-clause

h(Aa, Ba)← ap
(
Xk1, Y a, Aa

)
, ap

(
Xk1, Y a, Ba

)
.

By the meta-atom h(Aa, Ba) in the head of the above meta-clause, we monitor how Ca

and Da are changed. We apply the meta-meta-rules in Figure 2 and Figure 3, and obtain
the meta-clause

h([Ka|G], [Ka|J ])← ap
(
Lk, Da, G

)
, ap

(
Lk, Da, J

)
.

We use the inductive assumption rule, and obtain the meta-clause

h([Ka|G], [Ka|J ])← ap
(
Lk, Da, G

)
, eq(G, J).

Finally, we reach the meta-clause

h([Ka|J ], [Ka|J ])← ap
(
Lk, Da, J

)
.

The first and the second arguments of the h-meta-atom in this meta-clause are the same.
By reconsidering the initial meta-clause, we derive the eq-meta-atom eq(Aa, Ba) and ob-
tain the rewriting rule

ap
(
Xk1, Y a, Aa

)
, ap

(
Xk1, Y a, Ba

)
⇒ ap

(
Xk1, Y a, Aa

)
, ap

(
Xk1, Y a, Ba

)
, eq(Aa, Ba).
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By factoring the two ap-meta-atoms in the right-hand side of the rule with the existence
of the eq-meta-atom eq(Aa, Ba), we have the ap function rewriting rule

ap
(
Xk1, Y a, Aa

)
, ap

(
Xk1, Y a, Ba

)
⇒ ap

(
Xk1, Y a, Aa

)
, eq (Aa, Ba).

5.3.3. Deriving the ap function meta-meta-rule. From the results of the base case and the
inductive case above, we have the ap function rewriting rule

ap(∗x, ∗y, ∗z1), ap(∗x, ∗y, ∗z2)⇒ ap(∗x, ∗y, ∗z1), eq(∗z1, ∗z2).
By lifting up this rewriting rule, we derive the ap function meta-meta-rule

ap(∗x, ∗y, ∗z1), ap(∗x, ∗y, ∗z2)⇒ ap(∗x, ∗y, ∗z1), eq(∗z1, ∗z2).
Note that the rewriting rule above and the meta-meta-rule that is obtained by lifting it
up are syntactically the same in this particular case.

6. Non-Splitting Solution for the Problem prb1. Seeking for efficient computation,
the squeeze method may produce a non-splitting program by generation of only non-
splitting rules by meta-computation. We explain a non-splitting solution for the pal-pal
problem, which is obtained by making another multi-head rule by the squeeze method.

6.1. Towards generation of non-splitting rules. A non-splitting solution for the pal-
pal QA problem can also be constructed by the squeeze method. Construction of the
non-splitting solution for prb1 is summarized as

Problem prb1 ⇒ Meta-meta-rules⇒ Rewriting rules in Figure 4

⇒ Computation in Table 3,

where the meta-meta-rules are shown in Figure 2 and Figure 3. We can obtain the program
PB consisting of the rules in Figure 4, which solves prb1 correctly. All rules in Figure 4
can be automatically generated by using meta-computation and the correctness of the
generated rules is strictly guaranteed.

rpal: pal(∗x)⇒ rv(∗x, ∗x).
rrv1 : rv([∗a|∗x], ∗y)⇒ rv(∗x, ∗v), ap(∗v, [∗a], ∗y).
rrv2 : rv(∗x, ∗y), rv(∗x, ∗z)⇒ {=(∗y, ∗z)}, rv(∗x, ∗y).
rap4 : ap(∗x, [1], [1|∗z]), ap(∗x, [2], [2|∗z]) ⇒ {=(∗x, [ ]),=(∗z, [ ])}.
rrv4 : rv([ ], ∗x)⇒ {=(∗x, [ ])}.

Figure 4. PB: Non-splitting rewriting rules for solving prb1

This section focuses on generation of the rule rap4 , which is a non-splitting rule and
is used in PB in place of the splitting rule rap1 in the program PA. Construction of the
rewriting rule rap4 by meta-computation is summarized as

Problem prb1 ⇒ Meta-meta-rules ⇒ Rewriting rule rap4 ,

where the meta-meta-rules include basic meta-meta-rules in Figure 2 and Figure 3.
We compare the non-splitting solution with the splitting solution in Table 1. The num-

ber of computation steps in Table 3 is smaller than that in Table 1. The number of rules
in the obtained program PB is smaller than that in the program PA.

When we reach the sixth clause in Table 1, there are three atoms in the right-hand side of
the clause. We may select the second atom ap(y, [1], [1|x]). Assume that we determine the
pattern ap(∗x, ∗y, [∗a|∗z]) for this selected atom. By meta-computation, we can generate
the rule rap1 in Figure 1. This rule splits the sixth clause into two clauses, which are
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Table 3. Computation of PB for solving prb1

# State Rule

1
{
ans(x)← pal([1|x]), pal([2|x])

}
rpal

2
{
ans(x)← rv([1|x], [1|x]), pal([2|x])

}
rpal

3
{
ans(x)← rv([1|x], [1|x]), rv([2|x], [2|x])

}
rrv1

4
{
ans(x)← rv(x, y), ap(y, [1], [1|x]), rrv1

rv([2|x], [2|x])
}

5
{
ans(x)← rv(x, y1), ap(y1, [1], [1|x]), rrv2

rv(x, y2), ap(y2, [2], [2|x])
}

6
{
ans(x)← rv(x, y), ap(y, [1], [1|x]), rap4

ap(y, [2], [2|x])
}

7 {ans([ ])← rv([ ], [ ])} rrv4

8 {ans([ ])←} –

shown in the seventh state in Table 1. To obtain the non-splitting program PB, we have
to select body atoms that can produce non-splitting rules. Since a non-splitting rule is
never obtained by selecting an atom pattern consisting of a single atom at the sixth
clause, we proceed to select a pattern consisting of more than one atom. We explain the
generation of a non-splitting rewriting rule in the program PB in the next subsection.

6.2. Meta-computation seeking for the ap-ap rule. When we reach the sixth clause
in Table 3, i.e.,

ans(x)← rv(x, y), ap(y, [1], [1|x]), ap(y, [2], [2|x]),
assume that we want to generate a non-splitting ET rule that can be applied to this
clause. After the failure by the selection of a single body atom, we select the set of two
atoms {ap(y, [1], [1|x]), ap(y, [2], [2|x])} in the clause body. We start meta-computation
from the following meta-clause:

h
(
Bk1, Aa

)
← ap

(
Bk1, [V 1], [V 1|Aa]

)
, ap

(
Bk1, [W 2], [W 2|Aa]

)
.

After 12 applications of the meta-meta-rules in Figure 2 and Figure 3, we reach the
meta-clause

h([ ], [ ])←.

From the above two meta-clauses, we have the rewriting rule

ap(∗y, [1], [1|∗x]), ap(∗y, [2], [2|∗x]) ⇒ eq(∗y, [ ]), eq(∗x, [ ]).
By moving the eq-meta-atoms in the right-hand side of the rule to its execution part, we
have the rewriting rule (rap4)

ap(∗y, [1], [1|∗x]), ap(∗y, [2], [2|∗x]) ⇒ {=(∗y, [ ]),=(∗x, [ ])}.

7. Comparison to the Conventional Approach. The ET framework is next com-
pared with the conventional resolution-based computation framework from the viewpoint
of the squeeze method.
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7.1. Lack of rules in the conventional logic. The conventional logical computation
theory has both representational limitations and computational limitations. It was shown
in [8] that the pal-pal proof problem cannot be solved by SLD resolution. It was also shown
in [9] that the pal-pal QA problem cannot be solved by SLD resolution. The primary reason
for the unsolvability of the pal-pal problems by SLD resolution is the lack of multi-head
ET rules. Definite clauses can only support single-head rules in computation based on
SLD resolution.

Conventional logic programming has a serious limitation that it cannot solve all logical
problems on first-order logic. The squeeze method in the ET paradigm overcomes the
difficulty of conventional logic programming. All logical problems that can be solved in
logic programming can be solved by the squeeze method straightforwardly. Moreover, the
squeeze method can solve many logical problems that cannot be solved by conventional
logic programming. Multi-head rules are indispensable for solving some class of logical
problems. The squeeze method can generate multi-head rules and can apply them for
transforming logical formulas.

7.2. ET rules. The conventional concept of computation in logical problem solving is
based on procedural reading of logical formulas. Only one inference rule, i.e., the reso-
lution rule, is used in conventional computation by SLD resolution, and control for such
computation specifies how to select an occurrence of an atom in a clause at each compu-
tation step. Simple resolution-based computation without the possibility of using many
kinds of ET rules is the major reason for the computational limitations of conventional
logical reasoning and answer finding.

7.3. Program synthesis and problem solving. Program synthesis can be viewed as
a search for a sufficiently efficient program in a certain space of correct programs with
respect to a given specification. In the ET computation model, a program consists of
prioritized ET rules, and a program can be constructed by rule generation together with
assignment of priority to each rule one by one. We can select an optimal rule application
sequence efficiently by taking less-splitting rules. This provides a very powerful method
of program generation.

SLD-resolution-based logic regards a set of clauses as a program. Reduction to genera-
tion of clauses does not work well since it is difficult to decide how many clauses should be
generated. Computation by SLD resolution for solving the pal-pal QA problem is similar
to the computation by using the program {rpal, rrv0 , rap0} in Section 3.1, which leads to
infinite computation without reaching the correct answer.

7.4. Limitations of the concept of logic program. Program transformation has been
used for improving the efficiency of logic programs [10, 11, 12]. However, program trans-
formation in the resolution-based logic can never reach a correct program that can solve
the pal-pal QA problem since there is no logic program that can solve this problem
completely [8]. Logic programming could not achieve a general and practical method of
generating correct and efficient programs. This paper explained that the squeeze method
on the ET-based computation theory can generate a correct and efficient program for
solving the pal-pal problem. The concept of conventional logic program prevents us from
establishing a general and practical method of generating correct and efficient programs.

8. Concluding Remarks. Conventional logic adopts computation with a very limited
number of inference rules, e.g., the resolution rule. This is a major hindrance to develop-
ment of correct and efficient programs. In the ET model, a specification is a set of prob-
lems, a program is a set of prioritized ET rules, and computation consists in successive
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problem simplification by rule application. As long as ET rules are used, correct com-
putation results are guaranteed. ET rules can be generated by meta-computation with
guarantee of correctness. Program synthesis can be viewed as a search for a sufficiently
efficient program in a certain space of correct programs with respect to a given specifica-
tion. The squeeze method provides a basis for a framework for program synthesis in the
ET model, which supports the employment of the full power of various ET rules. The
method combines a solution to a given problem with synthesis of a program. It constructs
a program by accumulation of ET rules one by one on demand, with the goal of producing
a correct and efficient program. The method receives a problem as an input, accumulates
ET rules and specifies their priorities, applies the resulting ET rules for transforming the
input problem under the specified rule priorities, and finally produces a set of prioritized
ET rules as an output program. With the squeeze method, we can accumulate various
efficient ET rules and overcome the limitations of the conventional theory of logical com-
putation. The invention of the squeeze method justifies the superiority of ET-based logic
over the conventional inference-based logic.
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