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Abstract. With the development of various large-scale sky survey projects at home
and abroad, the amount of astronomical data has also shown a rapidly increasing trend.
How to classify astronomical objects efficiently and quickly has become a difficult problem
for astronomers. However, the advantages of deep learning can solve this problem. An
automatic classification algorithm named ResNet50-GQS for astronomical objects with
improved ResNet was proposed. We designed this algorithm based on ResNet by adding
SE modules, modifying convolution kernel size, adjusting residual structure, reducing
activation functions and normalizations. By comparing with some popular deep learning
algorithms such as GoogLeNet, DenseNet, VIT, and Swin Transformer, we proved that
the algorithm can classify galaxies, quasars and stars more accurately, and its accuracy
rate reaches 92.41%, which is higher than other algorithms by 0.91% to 5.79%, indicating
that it can be used in the study of astronomical objects classification in large-scale sky
survey projects.
Keywords: Astronomical objects, Image classification, Deep learning, ResNet

1. Introduction. Astronomical object is the general term of all objects in the universe.
Classifying the observed astronomical objects had been a basic problem since human be-
gan observing astronomical objects. In recent years, with the advancement of science and
technology, astronomical observation has developed to an unprecedented stage. Large-
scale sky survey projects around the world such as Sloan Digital Sky Survey (SDSS) [1],
Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) [2], Large Sky Area Multi-
Object Fiber Spectroscopy Telescope (LAMOST) [3], and Large Synoptic Survey Tele-
scope (LSST) [4] are in full swing. The development of these large-scale sky survey
projects has resulted in an exponential increase in the amount of astronomical data. For
such a huge amount of data, traditional manual classification methods have been unable
to meet the actual needs.

As machine learning shines in various fields, many astronomical researchers have also
turned their attention to machine learning, hoping to use artificial intelligence to achieve
automatic classification of astronomical objects. Related researches include artificial neu-
ral network [5], support vector machine [6], decision tree [7], classifier combination strate-
gy [8], random forest [9], stacking ensemble learning model [10], etc. Traditional machine
learning is a semi-automatic learning method, because the features learned by the ma-
chine need to be determined by industry experts and then hand-coded. For example,
commonly used features of astronomical objects include magnitude, size, shape, etc., and
the selection of features directly affects the accuracy of astronomical object classification.
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Deep learning is a branch of machine learning, which is developed from artificial neural
networks. The most significant difference between deep learning and traditional machine
learning is that features are not designed manually, but automatically learned from data
through neural networks. Deep learning extracts features by converting low-level features
into higher-level and more abstract features to make classification or prediction easier.
The specific process is as follows: When a galaxy image is input into a deep learning
model, the features learned by the first layer may be the outline and orientation of the
galaxy. It may be circular or elliptical. If it is an ellipse, its long axis direction may be
from upper left to lower right or lower left to upper right. The features learned by the
second layer may combine the outline and orientation learned by the first layer into more
complex shapes. Subsequent layers continue to abstract the previously learned features
to obtain classification results.
Up to now, deep learning has formed a variety of learning frameworks, such as con-

volutional neural networks, deep belief networks, and recursive neural networks. They
have been applied in the fields of computer vision, speech recognition, natural language
processing, audio recognition and bioinformatics with excellent results [11]. In recent
years, convolutional neural networks have become a popular method in computer vision.
Hafiyan et al. [12] combined convolutional neural network with extreme learning machine
to classify DNA damage in buccal mucosa samples. Harras et al. [13] proposed a vehicle
classification method using data replication and transfer learning in deep neural networks.
Wang et al. [14] proposed a multi-branch adaptive squeeze and excitation residual network
to solve the facial expression recognition problem. With the exponential growth of astro-
nomical data and the rise of deep learning, traditional machine learning algorithms can no
longer meet the needs of astronomical researchers. Therefore, deep learning attracts the
attention of astronomers with its true sense of automatic classification. Kim and Brun-
ner [15] used deep convolutional networks to construct a star-galaxy classification frame-
work. They experimented on data from SDSS and CFHTLS, and demonstrated that deep
convolutional neural networks can accurately classify stars and galaxies, which is more
competitive than traditional machine learning methods. However, due to the insufficient
number of training images with spectroscopic follow-up, the model may overfit the data.
Khalifa et al. [16] proposed a deep convolutional neural network for morphological classi-
fication of galaxies. The network can classify galaxies into 3 categories according to their
morphological characteristics: elliptical galaxies, spiral galaxies and irregular galaxies.
After training 1356 images, the test accuracy rate reaches 97.272%. Compared with other
relevant works of the same period, the proposed network structure has some advantages in
the test accuracy, but it lacks the process of data processing and data augmentation, and
too few training images will lead to the overfitting problem. Dai and Tong [17] proposed
an improved residual network (ResNet-26) for the morphological classification of galax-
ies. Their dataset includes 28790 galaxy images from the Galaxy Zoo 2. They classified
galaxies into 5 categories; except cigar-shaped galaxies, the other 4 categories have an
accuracy rate of more than 94%. In this paper, the data are introduced and processed in
detail, and the galaxies are divided in more detail. However, it is only compared with two
models, which is not convincing. Xu et al. [18] completed the design and optimization of
the RS-CNN model according to the characteristics of the mainstream CNN models, and
used the customized RS-CNN to conduct classification experiments on spiral galaxies and
stars. The inspiration of RS-CNN model comes from residual module and SE module,
but the paper does not mention how to use these two modules. He et al. [19] applied a
deep learning source detection network based on YOLO v4 object detection framework
to detecting sources, and designed a deep learning classification network named APSCnet
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to conduct classification experiments on galaxies, stars and quasars. The above research
has guiding significance for our work.

This paper aims to design an efficient automatic classification algorithm of astronom-
ical objects for astronomical researchers. Firstly, we used 9 deep learning classification
algorithms to classify astronomical objects. The model with the best performance was se-
lected by comparison. We then made a series of improvements to the selected model and
made comparative experiments on different versions of the improved model. Finally, an
algorithm model suitable for automatic classification of astronomical objects is designed.

We studied the classification algorithm of galaxies, quasars and stars in SDSS photo-
metric images based on convolutional neural networks. The specific workflow is as follows.

1) We first downloaded photometric images from the official website of SDSS1 , and
downloaded the catalogs of galaxies, quasars and stars in the photometric image through
the CasJobs server2 . The catalogs include some information such as right ascension (ra),
declination (dec), magnitude, and class.

2) Next, we synthesized the images of the i, r, and g bands into RGB images, and
used Python to convert the ra and dec of galaxies, stars and quasars to pixel coordinates.
Then we cropped them from the synthetic photometric images. The cropped astronomical
objects were divided into training set, validation set and test set according to the ratio
of 8 : 1 : 1. Before training, we performed a series of data augmentation such as resizing,
random rotation, and random flipping on the images.

3) Next, through comparative experiments, we verify that ResNet50 has the best clas-
sification performance for galaxies, quasars and stars in the existing traditional deep
learning algorithms.

4) Finally, we proposed ResNet50-GQS network model which is suitable for the clas-
sifications of galaxies, quasars and stars by adding SE modules, modifying convolution
kernel size, improving residual structure, reducing activation functions and normalizations
in ResNet50.

The organization of this paper is as follows: Section 2 introduces the ResNet and the
improved algorithm structure; Section 3 introduces data preparation, data preprocessing,
data set division and data augmentation; Section 4 introduces how we selected the model
with the best classification performance among the 9 deep learning algorithms, and the
experimental results of the improved model; Section 5 presents the conclusion and prospect
of this paper.

Figure 1. The workflow chart of this article

1https://dr16.sdss.org/
2http://skyserver.sdss.org/CasJobs/



582 X. GAO, L. TU, J. LI AND X. LI

2. Algorithm.

2.1. Convolutional neural network. Convolutional Neural Network (CNN) is a kind of
deep learning algorithm specially designed for image classification and recognition [20]. It
is a deep neural network with convolutional structure. Similar to the structure of artificial
neural network, CNN has input layer, hidden layer and output layer. The difference is
that CNN adds convolutional and pooling layers to the hidden layers. The function of the
convolutional layer is to extract features from data, and the pooling layer is to downsample
the output of the previous layer to remove redundant information, improve the robustness
of feature extraction and prevent overfitting.
This paper used 9 deep learning algorithms to classify galaxies, quasars and stars, as

follows: VGGNet [21], GoogLeNet [22], ResNet [23], MobileNetV2 [24], DenseNet [25],
EfficientNet [26], VIT [27], Swin Transformer [28] and ConvNeXt [29].

2.2. Deep residual network. In order to solve the degradation problem (with the in-
crease of network depth, the training accuracy reaches saturation and then decreases
rapidly) caused by the network being too deep, He et al. [23] proposed a deep residual
network. The core of ResNet is the residual structure. Figure 2 and Figure 3 are the
two residual structures in ResNet. Assuming that the input of the network is x, after a
series of layer structures the output is H(x). The information learned in this process is
F (x) = H(x)− x. In this case, the original output becomes H(x) = F (x) + x. As shown
in Figure 2 and Figure 3, the input xl first passes through two paths, then merges, and
finally outputs. One of the paths has convolutional layers, and the other path performs
identity mapping, that is, the input xl is directly transmitted to the final output without
any operation, and then added to the output of the other path. This structure is called
shortcut connection. In ResNet, the residual structure that skips 2 convolutional layers
is called Basicblock, and the residual structure that skips 3 convolutional layers is called
Bottleneck. The residual structure can be expressed as

xl+1 = f (Wsxl + F (xl)) (1)

where xl and xl+1 are the input and output of the lth residual structure; F is residual
function; Ws is used to match the dimensions of xl and F (xl); f is activation function,
which in ResNet is Linear Rectification Function (ReLU) [30]. According to the number
of network layers, ResNet can be divided into ResNet18, ResNet34, ResNet50, ResNet101
and ResNet152.

Figure 2. Basicblock structure Figure 3. Bottleneck structure
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2.3. Introduction of the improved algorithm. On the basis of ResNet, we propose
Res-Net50-GQS network model which is suitable for classifications of galaxies, quasars and
stars by adding attention mechanism, modifying the size of convolution kernel, improving
residual unit, reducing activation function and normalization.

Table 1. Description of some notations

Notations Meanings
conv Layer of convolution
X Input value
C Number of channels
W The width of the image
H The height of the image
Ftr Operation of convolution
Fsq A squeeze operation (global average pooling)

Fex(·,W ) An excitation operation (learning W to explicitly model channel association)
Fscale Reweighting the feature maps
GAP Global average pooling
k The size of 1D convolution
s Stride
p Padding
d Dimension

FC Full connection layer

We first used 9 deep learning algorithms to classify galaxies, quasars and stars, and se-
lected the model with the best classification performance – ResNet50 (see Section 4.3 for
the specific experimental results). Then, to explore whether other models in the ResNet
family have similar performance, we compared ResNet50 with ResNet18 and ResNet34,
and found that ResNet18 performed similarly to ResNet50. On this basis, we add attention
mechanism to ResNet18 and ResNet50, including SE module [31], ECA module [32] and
CBAM module [33]. SE module and ECA module are the channel attention mechanism,
CBAM is the attention mechanism combining channel and space. The channel attention
mechanism focuses on which channel features are more meaningful, and the spatial atten-
tion mechanism focuses on which parts of the space are more meaningful. We added SE
module and ECA module after the last convolution layer in the residual structure. CBAM
modules were added after the initial downsampling module of the network and before the
last fully connected layer of the network. The comparison results show that ResNet50-SE
has the best performance. The subsequent improvements are made on this basis. The
above experimental results can be found in Section 4.3.

The initial downsampling module of ResNet consists of a convolution layer with kernel
size of 7× 7 and a max pooling layer with kernel size of 3× 3, which can downsample the

Figure 4. SE module
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Figure 5. ECA module

Figure 6. CBAM module

original image by 4 times. In Swin Transformer [28], downsampling is generally performed
through a convolution layer with a large convolution kernel and no overlap between adja-
cent sliding windows (the size of the convolution kernel is equal to the stride). ConvNeXt
[29] adopted this method with a small performance improvement. Therefore, we also
applied it to our improved network.
In order to keep the downsampling multiple unchanged, we use a convolution layer with

stride 4 and kernel size of 4 × 4 to achieve 4-fold downsampling. In ResNet, the initial
numbers of channels of the residual structure from stage2 to stage5 are 64, 128, 256 and
512, respectively. The author of ConvNeXt referred to the number of channels in the
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Swin Transformer and changed it to 96, 192, 384 and 768, again improving network per-
formance. So, we also tried changing the initial numbers of channels of residual structure
to 96, 192, 384 and 768. The improved ResNet50-GQS network structure is shown in
Table 2 and Figure 7.

Table 2. Improved ResNet50-GQS network architecture

Stage Input size Operator Output size

Conv1 50× 50× 3 4× 4, 96, s = 4, p = 2 13× 13× 96

Conv2 13× 13× 96


3× 3, 96

1× 1, 384

1× 1, 384

× 3 13× 13× 96

Conv3 13× 13× 96


3× 3, 192

1× 1, 768

1× 1, 768

× 4 7× 7× 768

Conv4 7× 7× 768


3× 3, 384

1× 1, 1536

1× 1, 1536

× 6 4× 4× 1536

Conv5 4× 4× 1536


3× 3, 768

1× 1, 3072

1× 1, 3072

× 3 2× 2× 3072

Classifier 2× 2× 3072 average pool, 3-d FC 1× 1

Figure 7. Improved ResNet50-GQS network architecture
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Figure 8. Improved residual unit

The improved residual unit is shown in Figure 8. We first moved the convolution layers
with kernel size of 3×3 to the front, because a prerequisite for exploring large convolutional
kernels is to move up the position of deep convolutional layers [29]. Each convolutional
layer in the original ResNet is followed by a ReLU and Batch Normalization (BN) [34],
while in Swin Transformer [28], both activation functions and normalization are rarely
used. Therefore, we also reduce the use of ReLU and BN. We connected a BN after
the first convolution layer (3 × 3 conv), connected a ReLU after the second convolution
layer (1 × 1 conv), and added SE module after the last convolution layer (1 × 1 conv).
Since ReLU operation on low-dimensional information is easy to cause information loss,
while information loss is less when ReLU operation is performed on high-dimensional
information [24], we increased the number of channels in convolution layer connected to
ReLU to be equal to the number of channels in the third convolutional layer, which is 4
times the number of the first convolution layer.

3. Data.

3.1. Data preparation. Sloan Digital Sky Survey (SDSS) is one of the most successful
sky surveys in the history of astronomy, creating the most detailed three-dimensional
map of the universe, including deep color images of one-third of the sky, and more than
3 million spectrums of astronomical objects. There are 5 stages of SDSS so far (SDSS
I-V). SDSS-V began observing in October 2020, and its first data release is expected in
late 2022. In this paper, we used convolutional neural network to study the classification
algorithms of galaxies, stars and quasars on photometric image data obtained from SDSS
Data Release 16 (DR16) [35]. SDSS DR16 is the fourth data release of the Sloan Digital
Sky Survey Stage 4 (SDSS-IV). It contains SDSS data as of August 2018, covering the
sky area of 14555 deg2, with photometry for five bands of u, g, r, i, and z, resulting in a
catalog of more than 300 million stars and galaxies photometric data. These data can be
obtained through CasJob server [36].
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SDSS has a huge amount of data, including photometric images and spectral images.
The photometric image catalog (PhotoObj) in SDSS DR16 classifies a subset of sources. In
PhotoObj, the parameter ‘type’ indicates the selected source type, which classifies sources
into unknown sources (type = 0), cosmic rays (type = 1), galaxies (type = 3), stars (type =
6), etc. However, quasars are not classified. We know that stars are point sources, galaxies
are surface sources, and quasars are also point sources; therefore, stars and quasars cannot
be accurately separated according to their morphology. The precise source classification
method is presented in SDSS DR16’s spectral image catalog (SpecPhoto). In SpecPhoto,
the parameter ‘class’ classifies sources into galaxies, stars and quasars, which have been
calibrated by the spectrum. Since the spectrum is obtained by photographing a single
light source with a spectrometer, it contains more information about the source than the
photometric image, so deep learning algorithms can be used to achieve more accurate
source classification [19].

SELECT
p.objID, p.run, p.camcol, p.field, p.type,
p.ra, p.dec, s.z, s.class,
p.u, p.g, p.r, p.i, p.z, p.psfMag r, p.cModelMag r

from photoObj p
JOIN SpecPhoto s ON s.ObjID = p.objID
WHERE s.class = 'GALAXY'

AND s.zWarning = 0
AND p.run = 3430

Figure 9. The SQL query statement that outputs the catalog of all galax-
ies in run = 3430

SDSS stores all photometric images in Flexible Image Transport System (FITS) format
in the Science Archive Server (SAS)3 . We downloaded FITS files from SAS’s PhotoObj
with parameters ‘run’ of 16 regions, including 3430, 3434, 3437, 3438, etc. There are
a total of 21276 photometric images, and the resolution of each photometric image is
2048× 1489. We wrote Structured Query Language (SQL) in the CasJobs server to cross
the PhotoObj and SpecPhoto of 16 regions, and then set zWarning = 0 to exclude the
source of redshift anomalies. Finally, the catalogs were output in CSV format. We obtained
a total of 55486 sources, including 30934 galaxies, 10038 quasars and 14514 stars. The
range of r-band magnitudes is 13.1 < modelMag r < 23.2.

3.2. Image synthesis. The photometric images we downloaded from SAS were saved
in FITS format files according to the 5 bands of u, g, r, i, and z. Images in each band
may contain different information, so in order to use these images, it is often necessary to
combine images of several of bands. If we directly synthesize images of different bands of
the same photometric image, the synthesized image will deviate from the real image to a
certain extent. Because CCD cameras with different filters are not exposed at the same
time when shooting, there is a shooting time difference between the 5 bands of the same
photometric image. For example, a source might have pixel coordinates (256, 256) on
an i-band image, but it might have pixel coordinates (250, 256) on an r-band image. We
applied the program RGB synthesis written by He et al. [19] for image synthesis. Due to
the higher peaks of the response curves of the i, r, and g bands, astronomical researchers
usually use the images of these bands to synthesize the corresponding RGB pseudo-color
images. SDSS also uses i, r, and g bands to synthesize pseudo-color images, and confirmed

3https://data.sdss.org/sas/
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Figure 10. Photometric image synthesized by i, r and g bands

that the pseudo-color images are very close to real colors. We also followed the method to
synthesize the images of i, r, and g bands. The synthesized photometric image is shown
in Figure 10.

3.3. Cropping of sources. The classification network requires the input image size to
be a fixed value, but the source image size is different, so we convert all the data set images
into fixed size images. We can query the information of the sources we need through the
CasJobs server and output it in catalogs. The information includes ra, dec, magnitude and
class of the sources. Python’s astropy.wcs library has a function called all world2pix to
convert ra and dec to pixel coordinates. Therefore, we converted ra and dec of all sources
in catalogs to their pixel coordinates (x, y) in the photometric images through Python. In
this way, we were able to find the center positions of the sources in photometric images.
Then, we started cropping the sources. During the cropping process, we found that we
could not determine the size of the crop because some sources may be located near the
edge of the photometric images. For example, if we crop an image with a size of 30× 30
(at this point, the vertical distance between the center of the source and the crop border
is 15), and some sources may have a center position coordinate x (or y) value less than 15.
To avoid this situation, we introduced a parameter a0. a0 represents the vertical distance
between the center position of the source and the cropped bounding box. When the value
of x (or y) is less than a0, a0 will be replaced with the value of x (or y) smaller than
a0. We need to both crop the source completely and crop the noise around the source as
little as possible. After a series of cropping experiments, we determined that the cutting
size of 50 × 50 is the most appropriate. It not only ensures that each source is cropped
down completely, but also minimizes the noise cut down together. So, we initialized a0
to 25. As a result, most of our cropped images are 50 × 50 in size. The cropped images
are shown in Figure 11.

Figure 11. Cropped images (galaxy, quasar, star)
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3.4. Partition of dataset. We got a total of 55486 sources, but only 10038 quasars,
far fewer than galaxies and stars. To balance each sample, we try to keep the number
of galaxies and stars consistent with the number of quasars. Therefore, we only used the
galaxies in the first 8 ‘runs’, and the stars in the first 11 ‘runs’. The numbers of galaxies
and stars are 11512 and 10206. Finally, the number of sources we got was 31756, and
Figure 12 shows the histogram of the number of galaxies, quasars and stars. In order
to maximize the training set, we set the ratio of training set to 80% while ensuring the
same ratio of validation set and test set. Finally, we divided the dataset into training set,
validation set, and test set in a ratio of 8 : 1 : 1. Figure 13 and Table 3 show the number
distribution of galaxies, quasars, and stars in the training set, validation set, and test set.

Figure 12. The histogram of the number of galaxies, quasars and stars

Figure 13. The number distribution of galaxies, quasars, and stars in the
training set, validation set, and test set

Table 3. The number distribution of galaxies, quasars, and stars in the
training set, validation set, and test set

Training set Validation set Test set Total
GALAXY 9208 1152 1152 11512

QSO 8030 1004 1004 10038
STAR 8164 1021 1021 10206
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3.5. Data augmentation. In order to improve the generalization ability and the robust-
ness of the model, we preprocessed the training data before inputting the training data
into the model in the following ways.
1) Resize: reset the image resolution. We scaled the image to 50× 50. The reason for

this is that when the sources were cropped, some of the sources were cropped to a size
other than 50× 50, so here we scaled them all to 50× 50.
2) Random rotation: rotating the image does not change the type of the sources. We

took advantage of this to randomly rotate the image. The rotation angle is set to 90◦,
that is, randomly rotating between (−90◦, 90◦).
3) Random flip: À Random horizontal flip: flip left and right along the center axis of

the image; Á Random vertical flip: flip the image up and down along the horizontal axis
of the image. We took the default value of 0.5 for the flip probability.
For the validation set and test set, we only performed steps 1).

4. Analysis and Discussion of Experimental Results.

4.1. Performance evaluation indexes for algorithms. After training, the general-
ization performance of the algorithm needs to be evaluated. The following performance
evaluation indexes were adopted in this paper: accuracy, precision, recall, F1-score, ROC
curve and AUC, which can be obtained through confusion matrix.

Table 4. Confusion matrix

Reference
Prediction

Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Accuracy is the proportion of samples correctly classified by classifier to the total sam-
ples:

Acc =
TP + TN

TP + FP + FN + TN
(2)

Precision is the proportion of samples that are themselves positive among all samples
classified as positive:

P =
TP

TP + FP
(3)

Recall is the proportion of all positive samples that are correctly classified as positive:

R =
TP

TP + FN
(4)

F1-score is the harmonic mean of precision and recall, combining the results of precision
and recall:

F1 =
2

1
P
+ 1

R

=
2× P ×R

P +R
(5)

ROC curve is the receiver operating characteristic curve. Its vertical axis is True Posi-
tive Rate (TPR), and the horizontal axis is False Positive Rate (FPR):

TPR =
TP

TP + FN
(6)

FPR =
FP

TP + FP
(7)

The closer TPR is to 1 and FPR is to 0, the better the classification effect is.
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AUC is the area under the ROC curve. The larger AUC is, the better the classification
effect of the classifier is.

4.2. Experimental environment. The experiments in this paper were all performed on
a server with Intel(R) Xeon(R) E5-2640 v4 @2.40GHz CPU, NVIDIA RTX 3080Ti 12G
GPU, 32GB memory andWindows 64-bit. The experimental platform was PyCharm. The
models were all implemented using PyTorch 1.9 deep learning framework. In addition,
astropy.wcs, OpenCV, os and Matplotlib libraries are also used in this paper.

4.3. Training and model selection. We first used 9 deep learning algorithms to classify
galaxies, quasars, and stars, and selected the model with the highest accuracy on the test
set. These 9 models are the most classic and most used models in deep learning. So our
comparison is persuasive. The loss function used by all algorithms is CrossEntropyLoss,
and the training epoch was set to 60. Table 5 shows other hyperparameter settings of the
9 deep learning algorithms.

Table 5. Hyperparameter settings for 9 deep learning algorithms

Model Optimizer
Optimizer

momentum

Weight

decay

Base

learning

rate

Learning

rate

schedule

Batch

size

VGG16 [21] Adam None None 0.0001 None 256

GoogLeNet [22] Adam None None 0.0001 None 256

ResNet50 [23] Adam None None 0.0001 None 256

MobileNetV2 [24] Adam None None 0.0001 None 256

DenseNet121 [25] SGD 0.9 0.0001 0.0001
cosine

decay
256

EfficientNet b0 [26] SGD 0.9 0.0001 0.0001
cosine

decay
256

VIT base patch16 [27] SGD 0.9 0.00005 0.001
cosine

decay
32

Swin Transformer tiny patch4 [28] AdamW None 0.05 0.0001 None 32

ConvNeXt tiny [29] AdamW None 0.0001 0.0001
cosine

warmup
256

Table 6 shows the classification results of 9 deep learning algorithms. As can be seen
from Table 6, except for the AUC value, the other 4 indexes of ResNet50 are the highest
among the 9 algorithms, with accuracy of 91.50%, precision of 91.44%, recall of 91.30%,
and F1-score of 0.9130. Only the AUC value is 0.9748, which is slightly lower than the
highest value of 0.9797 in the table. Therefore, we will improve the ResNet50 next. The
accuracy of most of the algorithms in the table is around 90%, and the lowest accuracy
can even reach 86.62%, showing the good performance of these algorithms for classifying
galaxies, quasars and stars.

Since ResNet50 has the highest classification accuracy for galaxies, quasars, and stars
among the 9 deep learning algorithms, we continued to explore whether other models
of ResNet have similar performance. Table 7 shows the comparison of the classification
performance of ResNet50 with ResNet18 and ResNet34 on test set. It can be seen from the
table that the classification performance of ResNet18 is similar to that of ResNet50, and
their accuracy, recall and F1-score are all the same. The precision of ResNet18 is slightly
higher than that of ResNet50, but the AUC value is lower than that of ResNet50. The
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Table 6. Comparison of classification performance of 9 deep learning algorithms

Model Accuracy Precision Recall F1-score AUC

VGG16 [21] 90.97% 91.18% 90.73% 0.9073 0.9729

GoogLeNet [22] 91.25% 91.10% 91.01% 0.9102 0.9797

ResNet50 [23] 91.50% 91.44% 91.30% 0.9130 0.9748

MobileNetV2 [24] 89.58% 89.58% 89.28% 0.8929 0.9620

DenseNet121 [25] 88.04% 88.05% 87.71% 0.8774 0.9565

EfficientNet b0 [26] 88.01% 88.22% 87.66% 0.8767 0.9565

VIT base patch16 [27] 90.90% 90.71% 90.67% 0.9068 0.9706

Swin Transformer tiny patch4 [28] 91.06% 91.01% 90.81% 0.9082 0.9719

ConvNeXt tiny [29] 86.62% 86.53% 86.27% 0.8624 0.9191

Table 7. Comparison of classification performance between ResNet50 and
other models of ResNet

Model Accuracy Precision Recall F1-score AUC
ResNet50 [23] 91.50% 91.44% 91.30% 0.9130 0.9748
ResNet18 [23] 91.50% 91.51% 91.30% 0.9130 0.9680
ResNet34 [23] 90.87% 90.69% 90.52% 0.9055 0.9728

accuracy of ResNet34 can also reach more than 90%, indicating that ResNet is suitable
for classification tasks of galaxies, quasars and stars.
Through layers of screening, ResNet18 and ResNet50 were selected from a series of

models, which are more suitable for galaxy, quasar and star classification tasks. Because
the attention mechanism can focus on important information with a high weight, ignore
irrelevant information with a low weight, and constantly adjust the weight, so that im-
portant information can be selected under different circumstances. Therefore, we tried to
add attention mechanism in ResNet18 and ResNet50. Table 8 shows the classification
performance comparison after adding SE module, ECA module and CBAM module into
the model, respectively. Among them, the 5 indexes of ResNet50-SE are higher than other
models, which increase by 0.32%, 0.27%, 0.29%, 0.0031 and 0.0014 compared with those
before the SE module was added. The performance of ResNet18 also improved slightly af-
ter adding the SE module and the ECA module, but the classification accuracy decreased
after adding the CBAM module. The classification accuracy of ResNet50 decreased after

Table 8. Comparison of classification performance between ResNet18 and
ResNet50 after adding attention mechanism

Model Accuracy Precision Recall F1-score AUC

ResNet18 [23] 91.50% 91.51% 91.30% 0.9130 0.9680

ResNet18-SE 91.60% 91.46% 91.36% 0.9137 0.9752

ResNet18-ECA 91.56% 91.54% 91.37% 0.9138 0.9720

ResNet18-CBAM 91.38% 91.21% 91.15% 0.9117 0.9719

ResNet50 [23] 91.50% 91.44% 91.30% 0.9130 0.9748

ResNet50-SE 91.82% 91.71% 91.59% 0.9161 0.9762

ResNet50-ECA 91.44% 91.37% 91.21% 0.9122 0.9719

ResNet50-CBAM 91.44% 91.37% 91.21% 0.9123 0.9754
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adding the ECA module and CBAM module. It shows that the addition of SE module is
helpful to the performance improvement of ResNet50.

4.4. ResNet50-GQS classification results. After learning the Transformer model and
ConvNeXt model experience, we designed the ResNet50-GQS network model suitable for
galaxies, quasars and stars classification by adding SE module, modifying convolution
kernel size, improving residual unit, reducing activation function and normalization, etc.
The confusion matrix of ResNet50-GQS on test set is shown in Figure 14.

Figure 14. Confusion matrix of ResNet50-GQS on test set

As can be seen from the figure, 1117 galaxies, 914 quasars and 905 stars are correctly
classified, from which it can be calculated that the accuracy of ResNet50-GQS on test
set is 92.41%. In addition, each class has a number of misclassifications. The number
of galaxies misclassified is smaller, with 54 quasars misclassified as stars and 98 stars
misclassified as quasars. Because some quasars and stars are morphologically similar,
they are misclassified in large numbers. The precision, recall, F1-score and their average
values of galaxies, quasars and stars are shown in Table 9. Among them, the 3 indexes of
galaxies are the highest values, indicating that the model has the best effect on galaxies
classification.

Table 9. Precision, recall, and F1-score of galaxies, quasars, and stars on
test sets

Class Precision Recall F1-score
GALAXY 95.39% 96.96% 0.9617

QSO 87.97% 91.04% 0.8948
STAR 93.59% 88.64% 0.9105
Average 92.32% 92.21% 0.9223

Figure 15 shows the ROC curves and AUCs of ResNet50-GQS on test set. The curve
of each color represents a class of astronomical objects. As can be seen from the figure,
the best predictions are galaxies with the largest AUC value of 0.9922, followed by stars
and quasars. The average AUC value of the model is 0.9704, indicating that the model
has good prediction performance.
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Figure 15. ROC curves and AUCs of galaxies, quasars and stars on test set

5. Conclusion. With its true automatic classification, deep learning algorithms solve a
series of problems such as low classification accuracy and slow speed for astronomers. We
first compared the classification performance of 9 deep learning algorithms for galaxies,
quasars and stars, and selected the algorithm with the best classification performance –
ResNet50. Then, through a series of operations such as adding SE module, modifying the
size of the convolution kernel, improving residual unit, and reducing ReLU and BN, we
designed the ResNet50-GQS network model which is more suitable for galaxies, quasars
and stars classification. The performance evaluation indexes of ResNet50-GQS, such as
accuracy, precision, recall and F1-score are better than all other models in this paper.
However, for the classification between quasars and stars, ResNet50-GQS still has short-
comings: the number of misclassifications is large. In the future, we will try to start with
the data itself, process the data in more detail, and focus on improving the classification
accuracy between quasars and stars.
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