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Abstract. In this paper we study a semi-mixed oligopoly model within the framework
of conjectural variation. The semi-mixed structure refers to the presence of a semi-public
producer that maximizes the convex combination of domestic social surplus and its net
profit. The parameter of this convex combination is called socialization level. Each pro-
ducer conjectures the variations of the market-clearing price in response to its own pro-
duction’s variations. We extend the previously studied models to the more general case of
oligopoly, considering the case when the consumers’ demand function is not necessarily
differentiable nor continuous. By introducing the notions of exterior and interior equi-
libriums, we proved the existence and uniqueness theorems for the conjectural variations
equilibrium and the equilibrium state known as consistent. After that, we analyzed the
behavior of the market’s consistent equilibrium state under the changes in the consumers’
demand. Finally, we considered the particular case when the consumers’ demand is an
affine (linear) function to compare the consistent equilibrium against the Cournot and
perfect competition equilibriums. Based on this analysis, we formulated an optimality
criterion for the socialization level and provided the necessary conditions for its exis-
tence.
Keywords: Game theory, Mixed oligopoly, Consistent conjectural variations, Discon-
tinuous demand

1. Introduction. The study of the behavior of the agents in a mixed oligopoly (in which,
together with the private/foreign firms that maximize their net profit, also compete the
state companies, known as “special agents”, using another utility function) becomes more
and more popular in recent times. For example, in [1-4], there is an agent who tries to
maximize domestic social surplus. In [5-8], the models studied include a producer who
maximizes the income-per-worker function. [9, 10] deal with the third type of semi-mixed
oligopoly, in which the special agent maximizes the convex combination of the domestic
social surplus and its net profit. The mixed oligopolies attract the interest of economists,
in particular, because of their importance for the economy of the European countries, as
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well as Canada and Japan (see, e.g., [1]). The mixed oligopolies are often met in the
transitional economies of the Eastern European countries and the countries of the Soviet
Union, where the competition between the partially state-owned and private companies
is usual in many branches, especially in the financial areas. According to [2, 4], in many
cases, the state controls a sufficient part of the stocks of the privatized companies, but
one can also find companies with a mixed structure (private and social).
In the majority of the above-mentioned publications, the mixed oligopolies are studied

in the frameworks of the classical models by Cournot, Hotelling, or Stackelberg (see, e.g.,
[2, 3]). The concept of equilibrium by Nash is based on the idea that each player can
change its strategy while the rest of the agents in the game do not. However, another
more general concept equilibrium, named conjectural variations, was proposed by a se-
ries of authors (see, e.g., Bowley [11] and Frisch [12]). This concept assumes that the
model’s agents select the best strategy, considering that the other players can answer by
also changing their strategies. In our previous works [13-17] we already considered the
oligopoly model with conjectural variations, in which the degree of influence of each agent
is quantified with special parameters (the influence coefficients).
The economists widely use the various forms of the conjectural variations equilibrium

(CVE) to predict the results of the non-cooperative nature in oligopoly markets. The
previous researchers of the CVE mainly considered the games between two players (see,
[18]), and one of the main concepts in such investigations was the notion of conjecture.
The variational conjecture rij is used to describe the i-th player’s conjecture about the
j-th player’s reaction to an infinitesimal variation of the i-th player’s strategy. Such a
construction defines the concept of conjectured reaction functions. Having constructed
the rivals’ reaction functions, every player optimizes its (conjectured) utility function,
forming in this way its best response function to the conjectures. The equilibrium occurs
in the case when no player is interested in declining its strategy.
Such an equilibrium in conjectures (CVE) is often called consistent or “rational” when,

for every player, its best response function and the function of its conjectured reaction,
coincide. However, such a comparison, which is possible when the game is between two
players, runs into an impossible obstacle in the game of three and more players (see,
[18]) because every best response function must coincide with every conjectured reaction
function for every other player.
One of the possible ways to overcome this obstacle is the model’s structure proposed by

Bulavsky [19], in which every player makes its conjectures about the variational response
of some integral indicator (for example, the market price of the product) as a reaction
to the infinitesimal variations of its supply volume, instead of conjecturing the individual
reaction functions of its rivals. Knowing the analogous conjectures of the rest of the
players, every agent may apply a certain verification procedure to verifying if its conjecture
is consistent with the conjectures of the other players. It is quite natural to call the
conjectural variations equilibrium as consistent if all the conjectures successfully pass this
verification procedure.
In our previous works [20-23], the results from [19] were extended to the mixed and semi-

mixed oligopolies where the consumers’ demand function was assumed to be continuously
differentiable. Analogously to our other publications [13-17], where the classical oligopoly
model is considered, we looked for the conjectural variations equilibrium, but using the
ideas from [19]. In contrast, in [24], we managed to relax the latter model to the case
when the consumers’ demand function is not necessarily continuous, but only for the
mixed oligopoly case.
For this paper, we extended the results of our previous publications [20-24] by studying

the consistent conjectural variations equilibrium for a semi-mixed oligopoly model, in
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which the special agent maximizes the convex combination of domestic social surplus and
its net profit, and where the consumers’ demand function is not necessarily continuous
(in our previous works we considered either, a semi-mixed oligopoly where the consumers’
demand is continuously differentiable, or a mixed-oligopoly where the consumers’ demand
is not necessarily continuous; the mixed oligopoly being a particular case of the semi-mixed
oligopoly). Moreover, we considered the particular case when the consumers’ demand is an
affine function and also extended the results from [22, 23] by formulating an optimality
criterion for the socialization level of the semi-public company, for the general case of
oligopoly where the producers have quadratic cost functions (in our previous works we
considered only the case of duopoly or the case of oligopoly when every private producer
had the same cost function).

Note: The proofs of the results (lemmas, theorems, and corollaries) presented in this
paper were exported as supplementary materials.

2. Model Specification. In this section, we extend the results from [24] to the case
when the special agent maximizes the convex combination of domestic social surplus and
its net profit. Thus, let us consider an oligopoly market of one homogeneous good with
n + 1 producers, n ∈ N = {1, 2, . . . }, among which the special agent is identified by the
index i = 0, while the other agents i, i ∈ {1, . . . , n}, are the private companies who
maximize solely their net profits. Every company/producer i, i ∈ {0, 1, . . . , n}, has its
cost function fi(qi), where qi ≥ 0 is its production volume sent to the market.

Similarly to [24], we consider here the demand of two kinds: the passive demand given
by the demand function G(p), and the active demand D ≥ 0 that does not depend on
the price p > 0. The passive demand function G(p) is assumed to be non-negative and
non-increasing. Regarding the smoothness of the passive demand function, we assume
that it is continuously differentiable everywhere with the possible exception of a finite
number of points, in which it can be non-differentiable or even discontinuous. Let us
denote the left-hand limit of G(p) at the point p by G(p−) and the right-hand limit by
G(p+). Then, we can describe the equilibrium between demand and supply for a given
price p by the following balance inequalities

G(p+) +D ≤
n

∑

i=0

qi ≤ G(p−) +D. (1)

The properties of the passive demand and the cost functions are described by the
following assumptions.

Assumption 2.1. The demand function G(p) is defined for all p > 0, being non-negative,
non-increasing, and piecewise continuously differentiable. The number of points where the
demand function is not continuously differentiable is finite and, at those points, both G(p)
and its derivative G′(p) have (finite) left-hand limits, G(p−) and G′(p−) respectively, as
well as right-hand limits, G(p+) and G′(p+) respectively.

Assumption 2.2. For each i, i ∈ {0, 1, . . . , n}, the cost function fi(qi) is quadratic,
strictly increasing, and strictly convex, with fi(0) = 0, i.e.,

fi(qi) =
1

2
aiq

2
i + biqi, (2)

where ai, bi > 0. In addition, we assume that

b0 ≤ max
i∈{1,...,n}

{bi}. (3)
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The producers i ∈ {1, . . . , n} are private firms that choose their production volume
qi ≥ 0 to maximize their net profit given by the function

πi(p, qi) = pqi − fi(qi). (4)

On the other hand, the producer i = 0 (called public) is a semi-public company that
selects its production volume q0 ≥ 0 to maximize the convex combination of social surplus
and its net profit, given by the function

S(β, p, q0, q1, . . . , qn) = β













n
∑

i=0
qi

∫

0

p(x)dx− p

n
∑

i=1

qi − f0(q0)













+ (1− β)(pq0 − f0(q0)), (5)

where (following the ideas from [9, 10]) β ∈ (0, 1] is a parameter that we call socialization
level.
Now, if we accept that each agent of the oligopoly assumes that the variations in its

production can affect the market-clearing price p, then, the first order necessary conditions
for their production quantities qi will take the following form.
For the private firms i ∈ {1, . . . , n}

∂πi

∂qi
= p+ qi

∂p

∂qi
− f ′

i(qi)

{

= 0, if qi > 0,

≤ 0, if qi = 0,
(6)

and for the semi-public company i = 0

∂S

∂q0
= p+

[

(1− β)q0 − β

n
∑

i=1

qi

]

∂p

∂q0
− f ′

0(q0)

{

= 0, if q0 > 0,

≤ 0, if q0 = 0.
(7)

From Formulas (6) and (7), we see that in order to describe the behavior of the producers
(both private and public), it is enough to evaluate the derivatives

∂p

∂qi
= −νi, i ∈ {0, 1, . . . , n}, (8)

where the minus sign is introduced to work with the non-negative values of νi, which we
call the i-th producer’s influence coefficient.
In addition, to use the first-order necessary conditions (6) and (7) as sufficient, we

need the i-th producer’s objective function to be (at least, locally) concave. The latter
is achieved if we assume that the conjectured influence coefficients νi, i ∈ {0, 1, . . . , n},
are non-negative constants. Under this assumption, the conjectured (local) dependence
of the private firms’ profit πi upon the variations in their production volumes (ηi−qi) has
the form

π̂i(ηi) = [p− νi(ηi − qi)]ηi − fi(ηi), (9)

which is a quadratic and concave function with respect to ηi. Thus, the first-order nec-
essary (and now sufficient) conditions for the equilibrium’s production volumes ηi = qi,
i ∈ {1, . . . , n}, to be optimal are given by

{

p = νiqi + aiqi + bi, if qi > 0,

p ≤ bi, if qi = 0.
(10)
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Similarly, the semi-public company’s conjectured (local) dependence of its objective
function S upon the variations in its production volume (η0 − q0) has the form

Ŝ(η0) = β























η0+
n
∑

i=1
qi

∫

0

p(x)dx− [p− ν0(η0 − q0)]

n
∑

i=1

qi − f0(η0)























+ (1− β){[p− ν0(η0 − q0)]η0 − f0(η0)},

(11)

which is a concave function with respect to η0, so the necessary and sufficient condition
for the equilibrium’s production volume η0 = q0 to be optimal are as follows























p = ν0

[

(1− β)q0 − β

n
∑

i=1

qi

]

+ a0q0 + b0, if q0 > 0,

p ≤ −βν0

n
∑

i=1

qi + b0, if q0 = 0.

(12)

In this paper, we use the approach first proposed in [19] and further developed in [20-
24], in which the forecast parameters for the equilibrium state are determined together
with the price p and the production volumes qi, i ∈ {0, 1, . . . , n}, based upon a special
verification procedure that will be described in Section 4. In this case, the influence
coefficients νi, i ∈ {0, 1, . . . , n}, are the numerical parameters determined only for the
equilibrium state. As in the works mentioned above, we will call such equilibrium state as
interior. However, before we introduce the concept of interior equilibrium, we first need
to define another concept of equilibrium that we call exterior.

3. Exterior Equilibrium: Existence, Uniqueness, and One-Sided Derivatives.

Definition 3.1. The vector (p, q0, q1, . . . , qn) is called exterior equilibrium for the influ-
ence coefficients νi ≥ 0, i ∈ {0, 1, . . . , n}, if the market is balanced, i.e., condition (1) is
satisfied, and for each producer the optimality conditions hold, i.e., the relationships (10)
for all i, i ∈ {1, . . . , n}, and (12), are valid.

From now on, we will consider only the case when the list of really producing agents
does not change (i.e., it is independent of the values of the influence coefficients νi). To
guarantee this, we introduce an additional condition.

Assumption 3.1. For the price value p0 = max
i∈{1,...,n}

{bi}, the following inequality is valid:

n
∑

i=0

p0 − bi

ai
< G(p0+). (13)

If the equilibrium price p satisfies that p > p0, then, we can guarantee that none of the
producers will leave the market.

Lemma 3.1. Let Assumptions 2.1 and 2.2 hold. If the vector (p, q0, q1, . . . , qn) is the
exterior equilibrium for the given influence coefficients, then, p > p0 if and only if qi > 0
for all i ∈ {0, 1, . . . , n}.1

1The proofs of the lemmas, theorems and corollaries presented in this paper were exported as supple-
mentary materials.
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Assumptions 2.1, 2.2, and 3.1 guarantee that the exterior equilibrium exists uniquely
for any set of the influence coefficients νi ≥ 0, i ∈ {1, . . . , n}, and ν0 ∈ [0, ν0), where

ν0 =















a0

(

G(p0+)−
n
∑

i=0

p0−bi
ai

)

n
∑

i=1

p0−bi
ai

−(1−β)G(p0+)
, if

n
∑

i=1

p0 − bi

ai
> max

{

1− β

β

(

p0 − b0

a0

)

, (1− β)G(p0+)

}

,

+∞, otherwise.

(14)
This result is established in the following theorem.

Theorem 3.1. Under Assumptions 2.1, 2.2, and 3.1, for any ν0 ∈ [0, ν0), νi ≥ 0,
i ∈ {1, . . . , n}, D ≥ 0, and β ∈ (0, 1], there exists uniquely the exterior equilibrium
(pex, qex0 , qex1 , . . . , qexn ), where the functions pex = pex(β, ν0, ν1, . . . , νn, D), and qexi = qexi (β,
ν0, ν1, . . . , νn, D), i ∈ {0, 1, . . . , n}, are continuous with respect to νi, i ∈ {0, 1, . . . , n}, D,
and β. Moreover, pex > p0, q

ex
i > 0 for all i ∈ {0, 1, . . . , n}, and the equilibrium price has

left and right-hand partial derivatives with respect to D given by

∂pex

∂D−
=























1
ν0+a0

(1−β)ν0+a0

n
∑

i=0

1
νi+ai

−G′(pex−)
, if

n
∑

i=0

qexi = G(pex−) +D,

0, if

n
∑

i=0

qexi < G(pex−) +D,

(15)

and

∂pex

∂D+
=























1
ν0+a0

(1−β)ν0+a0

n
∑

i=0

1
νi+ai

−G′(pex+)
, if

n
∑

i=0

qexi = G(pex+) +D,

0, if

n
∑

i=0

qexi > G(pex+) +D,

(16)

respectively.

If we consider every point p where the demand function G(p) is discontinuous, we can
connect the points (p,G(p−)) and (p,G(p+)), in the graph of G(p), with a vertical line
to obtain a curve L, which we call the (passive) demand curve. Each point (p,G) of
the demand curve L satisfies the relationships G(p+) ≤ G ≤ G(p−), and the exterior
equilibrium (pex, qex0 , qex1 , . . . , qexn ) defines the point (pex, Gex) ∈ L such that Gex + D =
∑n

i=0 q
ex
i . Now, at the points (p,G) belonging to the vertical line segments of the curve

L, we define the left-hand derivative G′(p−) = −∞ if G < G(p−) and the right-hand
derivative G′(p+) = −∞ if G > G(p+). Thus, Formulas (15) and (16) from Theorem 3.1
can be rewritten uniformly as follows:

∂pex

∂D±
=

1
ν0 + a0

(1− β)ν0 + a0

n
∑

i=0

1

νi + ai
−G′(pex±)

=
1

1

(1− β)ν0 + a0
+

ν0 + a0

(1− β)ν0 + a0

n
∑

i=1

1

νi + ai
−G′(pex±)

.

(17)

Therefore, at the equilibrium state (pex, qex0 , qex1 , . . . , qexn ), the relationship ∂pex

∂D− 6= ∂pex

∂D+

can happen only if G′(pex−) 6= G′(pex+), i.e., if the point (pex, Gex) is a sharp corner of
the demand curve L. Moreover, if ∂pex

∂D− < ∂pex

∂D+ , then, the corner point is convex, whereas

if ∂pex

∂D− > ∂pex

∂D+ , then, the corner point is concave.
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Now, with the help of the exterior equilibrium and Formula (17) obtained from Theorem
3.1, we can deduce Bulavsky’s verification procedure (called consistency criterion) to
define the consistency of the influence coefficients which yield the consistent (interior)
equilibrium.

4. Consistency Criterion and Interior Equilibrium. To define the concept of interi-
or equilibrium we have to consider the procedure of verification of the influence coefficients
introduced in [19]. Assume that we have the exterior equilibrium (pex, qex0 , qex1 , . . . , qexn ) that
occurred for certain values of νi, i ∈ {0, 1, . . . , n}, D, and β. Suppose that one of the
producers, for example, producer k, wants to determine its influence coefficient νk. To do
that, the producer k abstains from maximizing its objective function and starts making
small variations in its production volume qexk . Mathematically, this is equivalent to assum-
ing, that producer k temporally quits the market, so its production has to be subtracted
from the consumers’ demand, specifically, from the active demand D. Thus, for the new
active demand Dk = D − qk, the infinitesimal variations in qexk imply the infinitesimal
variations in Dk (but in the opposite direction). In this situation, the producer k can
estimate the left and right-hand derivatives of the equilibrium price with respect to the
new active demand Dk as follows

∂pex

∂D±
k

=
∂pex

∂(D − qk)±
= −

∂pex

∂q∓k
, (18)

i.e., the left and right-hand limits of its influence coefficient.
By Theorem 3.1, we can apply Formula (17) to calculating the derivatives ∂pex

∂D±

k

, however,

we need to remember that the producer k has temporarily left the market, so we have to
modify Formula (17) by excluding the terms with the index i = k. Hence, we obtain the
following criterion.

Definition 4.1 (Consistency Criterion). At the exterior equilibrium (pex, qex0 , qex1 , . . . , qexn ),
the influence coefficients νi, i ∈ {0, 1, . . . , n}, are referred to as consistent if for every i,
i ∈ {0, 1, . . . , n}, there exists ri such that

min
{

G′(pex−), G′(pex+)
}

≤ ri ≤ max
{

G′(pex−), G′(pex+)
}

, (19)

and the following equalities hold:

ν0 =
1

n
∑

i=1

1

νi + ai
− r0

, (20)

νi =
1

1

(1− β)ν0 + a0
+

ν0 + a0

(1− β)ν0 + a0

n
∑

j=1
j 6=i

1

νj + aj
− ri

, i ∈ {1, . . . , n}. (21)

In the above definition, the values G′(pex−) and G′(pex+) are calculated at the point
(p,G) = (pex,

∑n
i=0 q

ex
i − D) on the demand curve L. Thus, if G′(pex−) = −∞ or

G′(pex+) = −∞, it could be possible that ri = −∞ for some i ∈ {0, 1, . . . , n}, in which
case the corresponding consistent influence coefficient is νi = 0.

Now, making use of the consistency criterion, we can define the concept of interior
equilibrium.

Definition 4.2. The vector (pex, qex0 , qex1 , . . . , qexn , ν0, ν1, . . . , νn) is called interior equilibri-
um if, for the given influence coefficients νi, i ∈ {0, 1, . . . , n}, the vector (pex, qex0 , qex1 , . . . ,

qexn ) is the exterior equilibrium, and the Consistency Criterion 4.1 is satisfied, i.e., there
exist values ri, i ∈ {0, 1, . . . , n}, such that the relationships (19)-(21) are valid. If, in
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addition, ri = rj for all i, j ∈ {0, 1, . . . , n}, then, the interior equilibrium is called strong
interior equilibrium.

If the interior equilibrium corresponds to a smooth point on the demand curve L, then,
all the values ri, i ∈ {0, 1, . . . , n}, must be the same. Only if the interior equilibrium
corresponds to a vertex, i.e., if ∂pex

∂D− 6= ∂pex

∂D+ , the Consistency Criterion 4.1 allows different
values for ri.

Theorem 4.1. Under Assumptions 2.1, 2.2, and 3.1, for any D ≥ 0 and β ∈ (0, 1], there
exists the strong interior equilibrium (p∗, q∗0, q

∗
1, . . . , q

∗
n, ν

∗
0 , ν

∗
1 , . . . , ν

∗
n).

In the next two sections, we apply the results obtained above to analyzing the behavior
of the market’s interior equilibrium. In Section 5 we consider the consumers’ demand to
be a discontinuous function, while in Section 6 we consider the consumers’ demand to be
an affine function.

5. Structure of Demand and Equilibrium. This section aims to study how the varia-
tions in the demand structure affect the equilibrium’s price and supplies. We are interested
in the strong interior equilibrium, because of which we will only investigate the behavior
of the solutions to the consistency criterion’s system of equations in the following form:

ν0 =
1

n
∑

i=1

1

νi + ai
− r

, (22)

νi =
1

1

(1− β)ν0 + a0
+

ν0 + a0

(1− β)ν0 + a0

n
∑

j=1
j 6=i

1

νj + aj
− r

, i ∈ {1, . . . , n}, (23)

where r ∈ [−∞, 0].
For r = −∞, the system of Equations (22) and (23) has a unique solution νi = 0,

i ∈ {0, 1, . . . , n}. For the other values r ∈ (−∞, 0], the following assertion is true.

Lemma 5.1. For any r ∈ (−∞, 0] and β ∈ (0, 1], there exists a unique solution νi(r, β),
i ∈ {0, 1, . . . , n}, for the system of Equations (22) and (23), which is continuously differ-
entiable with respect to r and β. Moreover,

lim
r→−∞

νi(r, β) = 0, i ∈ {0, 1, . . . , n}. (24)

The optimality conditions (10), for qi > 0, i ∈ {1, . . . , n}, and (12), for q0 > 0, yield
the functions

qi(p, νi) =
p− bi

νi + ai
, i ∈ {1, . . . , n}, (25)

q0(p, β, ν0, ν1, . . . , νn) =

p− b0 + βν0
n
∑

i=1

qi(p, νi)

(1− β)ν0 + a0
, (26)

respectively.
Therefore, for each r ∈ [−∞, 0] and β ∈ (0, 1], after finding the solution νi = νi(r, β),

i ∈ {0, 1, . . . , n}, for (22) and (23), we can construct the total supply function

Q(p, r, β) = q0(p, β, ν0, ν1, . . . , νn) +
n

∑

i=1

qi(p, νi)

=
p− b0

(1− β)ν0 + a0
+

ν0 + a0

(1− β)ν0 + a0

n
∑

i=1

p− bi

νi + ai
.

(27)
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Since the values νi = νi(r, β), i ∈ {0, 1, . . . , n}, depend solely upon r and β, the total
supply function given by (27) represents a straight line for all p ∈ (p0,+∞), whose slope
is equal to

∂Q

∂p
=

1

(1− β)ν0 + a0
+

ν0 + a0

(1− β)ν0 + a0

n
∑

i=1

1

νi + ai
. (28)

5.1. Example 1. Consider the following illustrative example. The socialization level is
β = 1, the active demand is D0 = 1000, and the passive demand is the step function

G(p) =

{

1000, if p ≤ 23,

0, if p > 23,
(29)

so we are considering that the demand makes a jump.
The semi-public company’s production costs are given by the quadratic function

f0(q0) = 0.1q20 + 1.5q0. (30)

We consider n = 2 private firms which have the same quadratic production costs given
by the function

fi(qi) = 0.01q2i + 2.5qi, i ∈ {1, 2}. (31)

For the fixed value β = 1, each value of r ∈ [−∞, 0] defines a total supply function
Q(p, r, 1) which is linear with respect to p > p0 = max{1.5, 2.5, 2.5} = 2.5. Using Formula
(28) we can compute the slope of Q(p, r, 1) for each value of r, which (for this example)
is strictly decreasing; thus, the straight line Q(p, r, 1) will rotate clockwise as the value of
r increases from −∞ to zero. This is shown in Figure 1.
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Figure 1. Demand and supply as functions of p for Example 1

In the graphs of Figure 1, we can see the straight lines depicting the total supply
functions Q(p, r, 1) for various values of r, including the 2 extreme cases Q(p,−∞, 1) and
Q(p, 0, 1). The points (p,G+D) = (23, 2000), (p,G+D) = (23, 1000), and (p,G+D) ≈
(26.22, 1000), satisfy the condition

min
{

G′(p−), G′(p+)
}

≤ r ≤ max
{

G′(p−), G′(p+)
}

, (32)
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so they represent 3 different strong interior equilibriums, showing that the uniqueness of
the interior equilibrium is not guaranteed. We will refer to these interior equilibriums in
that order.
Now, let the economy stay in the first (strong) interior equilibrium at (p,G + D) =

(23, 2000), and suppose that the active demand D starts growing up from its original
value D0 = 1000, elevating the demand curve as shown in Figure 2.
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Figure 2. Behavior of the (strong) interior equilibrium when the active
demand changes from D0 to D1

From Figure 2 we see that, while D increases from D0 to D1, the first interior equilib-
rium changes continuously, keeping the price intact at the value p1 = 23 and completely
satisfying the demand G(p) +D. The supply increases under the same price at the cost
of diminishing the equilibrium’s influence coefficients (as a consequence of the value r

decreasing). The next stage of the process is reflected in Figure 3.
From Figure 3 we can see that, if the active demand belongs to the interval (D1, D2),

the first interior equilibrium is fixed at (p,G+D) = (23, 2157.5). In this interval, neither
the market price nor the total supply depend on the active demand D, but there is a
deficit as a consequence of the total demand G(p) + D not being satisfied. This deficit
will grow up to the volume of the passive demand G(p1).
The third stage happens after the active demand crosses the value D2 = 2157.5 as

shown in Figure 4.
From Figure 4 we see that, when the active demand reaches the value D2, the first and

second interior equilibriums meet at the point (p,G + D) = (23, 2157.5). Any further
increments of the active demand D beyond D2 will cause these two interior equilibriums
to disappear, forcing the economy to jump to the remaining (third) interior equilibrium,
which will result in the market price jumping from p1 = 23 to p2 > 53.81. At this new
state, the passive demand falls to zero, and even though the total supply has not dropped,
the price becomes higher.
Now, assume that the active demand starts to decrease. The events will not go back the

same way. The first and second interior equilibriums will appear again but the economy
will stay at the third interior equilibrium belonging to the straight line Q(p, 0, 1) until the
active demand falls to the value D0 ≈ 864.96, as shown in Figure 5.
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Figure 3. Behavior of the interior equilibrium when the active demand
changes from D1 to D2
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Figure 4. Behavior of the interior equilibrium when the active demand
increases beyond D2

From Figure 5 we can see that, even if the active demand comes back to its initial
value by decreasing from D2, the economy will stay at the third interior equilibrium, so
the price will be higher than its initial value p1 = 23 and only the active demand will be
satisfied.

If the active demand continues to decrease below D0, the second and third interior equi-
libriums will disappear and the economy will jump back to the first interior equilibrium,
as shown in Figure 6.
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Figure 5. Behavior of the interior equilibrium when the active demand
changes from D2 to D0
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Figure 6. Behavior of the interior equilibrium when the active demand
falls below D0

From Figure 6 we see that, after the economy jumps back to the first interior equilibri-
um, the price will stay at p1 = 23, but the total supply will grow up to the value G(p)+D,
satisfying both the passive and the active demands.
If the demand curve has two or more steps, the picture will be similar. The main

difference will be that the process described above would be repeated as many times as
the number of steps between the straight lines Q(p,−∞, 1) and Q(p, 0, 1). Finally, we
note that, in a more realistic case, when the demand curve has somewhat smoothed steps,
the process will be almost the same.
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5.2. Example 2. Consider the same example again, but now the value of the active
demand is fixed at D = 0, and we replace the passive demand G(p) with the following
function

G(p) =











1000, if p ≤ 23,

500, if 23 < p ≤ 35,

0, if p > 35.

(33)

This time, the active demand will not change, but the structure of the passive demand
will, depicting the possible changes in the ability to buy the product of a certain group of
consumers. We are going to illustrate this process considering two groups of consumers.
Again, the demand curve is a very simple step-function, but now with two steps as shown
in Figure 7.
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Figure 7. Demand and supply as functions of p for Example 2

In the graph of Figure 7, the price p1 = 23 is critical for a group of consumers with a
fixed passive demand of G1 = 500, whereas the price p2 = 35 is critical for a richer group
of consumers with a fixed passive demand of G2 = 500, in addition to active demand with
the value D = 1000, thus, the structure of G(p) defined by (33).

Again, let the economy stay in the first interior equilibrium at (p,G+D) = (23, 2000),
and let us assume that the consumer’s ability of the first (poorer) group drops. This
process can be modeled by decreasing the value of the critical price p1, as shown in Figure
8.

From Figure 8, we see the first stage of this process. The market price will be the same
as the critical price p1 for the poorer consumers until the critical price drops down to the
value p1 = 21.5 and the production process reaches perfect competition.

At the second stage, when the critical price p1 for the first group of consumers belongs
to the interval (16.74, 21.5), the market price continues to drop together with the critical
price, but the total supply begins to decrease, creating a deficit which will increase as the
price (and the critical price) approaches p = p1 ≈ 16.74.

If the consumers’ ability to buy the product continues to drop, the economy will jump
to the third interior equilibrium at (p,G +D) = (35, 1500), causing the market price to
jump from p = 16.74 to p = 35, as shown in Figure 9.
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Figure 8. Behavior of the interior equilibrium when the critical price p1
changes from p1 = 23 to p1 ≈ 16.74
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Figure 9. Behavior of the interior equilibrium when the critical price p1
drops beyond p1 ≈ 16.74

From Figure 9, we see that, as the equilibrium state jumps, the poorer group of con-
sumers leaves the market completely, liquidating the deficit in the demand.
In this new equilibrium state, even if the consumers’ ability (to buy the product) of

the first group is restored, the economy will not return to the initial state. A continuous
return is possible if the consumers’ ability of the first group increases up to that of the
second group as shown in Figure 10.
As a conclusion, we note the following fact. The perfect competition regime appears

(for both examples) in the vertical parts of the demand curve. If the steps are smooth, but
with a high slope (i.e., almost vertical), the perfect competition regime does not appear
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Figure 10. Behavior of the interior equilibrium when the critical price p1
changes from p1 < 16.74 to p1 = p2 = 35

for strictly convex quadratic cost functions. Its role is played instead by a close production
regime with small influence coefficients, defined by the steepness of the demand curve (in
its almost vertical parts).

6. A Particular Case: Affine Demand Function, Identical Private Producers

and Quadratic Cost Functions. In this section, we consider a particular case that
guarantees the uniqueness of the interior equilibrium to conduct a comparative analysis
between the latter with the exterior equilibriums corresponding to the Cournot and the
perfect competition conjectures.

Then, let us consider that the active demand is zero and the passive demand is piecewise
linear.

In this case, Assumption 2.1 is restated as follows.

Assumption 6.1. The passive demand is given by the piecewise function

G(p) =











−Kp + T if 0 < p <
T

K
,

0 if p ≥
T

K
,

(34)

where K > 0 and T > 0.

By the proof of Theorem 3.1 and the structure of G(p), we know that the exterior
equilibrium’s price pex, which is obtained by the intersection of the total volume Q(p) =
∑n

i=0 qi(p) and the demand G(p), must lie within the open interval
(

p0,
T
K

)

, and then, we
can consider the demand function to be the affine function

G(p) = −Kp + T > 0, (35)

and rewrite the balance Equation (1) as
n

∑

i=0

qi = G(p). (36)
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In the following subsections, we proceed to analyze the behavior of the 3 equilibriums
kind: consistent, Cournot, and perfect competition, as functions of the socialization level
β.

6.1. Analysis of consistent equilibrium. For this particular case, the consistency
criterion’s definition is reformulated as follows.

Definition 6.1 (Consistency Criterion for the Particular Case). The influence coefficients
νi ≥ 0, i ∈ {0, 1, . . . , n}, are called consistent for the corresponding exterior equilibrium
(pex, qex0 , qex1 , . . . , qexn ), if the following equalities are valid:

ν0 =
1

n
∑

i=1

1

νi + ai
+K

, (37)

and

νi =
1

1

(1− β)ν0 + a0
+

ν0 + a0

(1− β)ν0 + a0

n
∑

j=1
j 6=i

1

νj + aj
+K

, i ∈ {1, . . . , n}. (38)

Theorem 6.1. Under Assumptions 2.2, 3.1, and 6.1, for every β ∈ (0, 1] there exists
uniquely the interior equilibrium (p∗, q∗0, q

∗
1, . . . , q

∗
n, ν

∗
0 , ν

∗
1 , . . . , ν

∗
n).

As a consequence of Theorem 6.1, we have that for every β ∈ (0, 1] there exists uniquely
the interior (consistent) equilibrium, which defines the functions p∗ = p∗(β), q∗i = q∗i (β),
and ν∗

i = ν∗
i (β), i ∈ {0, 1, . . . , n}, as well as the private firms’ profit functions π∗

i (β) =
πi(p

∗(β), q∗i (β)), i ∈ {1, . . . , n}.

Theorem 6.2. The interior equilibrium’s functions p∗(β), q∗i (β), ν
∗
i (β), i ∈ {0, 1, . . . , n},

and the private firms’ profit functions π∗
i (β), i ∈ {1, . . . , n}, are continuously differentiable

with respect to β ∈ (0, 1]. Moreover, the functions p∗(β) and ν∗
i (β), i ∈ {0, 1, . . . , n}, are

strictly decreasing for all β ∈ (0, 1].

6.2. Analysis of Cournot equilibrium. In oligopoly models, the classical Cournot
conjecture is understood by the following identities

ωi =
∂G

∂qi
= 1, ∀i ∈ {0, 1, . . . , n}. (39)

Within the framework studied in this paper, the latter identities, given by (39), yield
the following influence coefficients

νi = −
∂p

∂qi
= −

ωi

G′(p)
= −

1

G′(p)
, ∀i ∈ {0, 1, . . . , n}. (40)

Hence, the classical Cournot conjecture for this particular case is given by

νc
i =

1

K
, ∀i ∈ {0, 1, . . . , n}. (41)

As a consequence of Theorem 3.1, we have that for every β ∈ (0, 1], there exists uniquely
the exterior equilibrium for the Cournot conjectures νc

i = 1
K
, i ∈ {0, 1, . . . , n}, which

defines the functions pc = pc(β) and qci = qci (β), i ∈ {0, 1, . . . , n}.
We can easily see that the Cournot equilibrium is a different equilibrium state from the

interior equilibrium since the consistency criterion’s system of Equations (37) and (38) do
not hold. Indeed,

1
n
∑

i=1

1

νc
i + ai

+K

<
1

K
= νc

0, (42)
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and

1
1

(1− β)νc
0 + a0

+
νc
0 + a0

(1− β)νc
0 + a0

n
∑

j=1
j 6=i

1

νc
j + aj

+K

<
1

K
= νc

i , i ∈ {1, . . . , n}. (43)

Similarly as before, for every β ∈ (0, 1], the Cournot (exterior) equilibrium defines the
private firms’ profit functions πc

i (β) = πi(p
c(β), qci (β)), i ∈ {1, . . . , n}.

Theorem 6.3. Under Assumptions 2.2, 3.1 and 6.1, the exterior equilibrium’s functions
pc(β), qci (β), i ∈ {0, 1, . . . , n}, and the private firms’ profit functions πc

i (β), i ∈ {1, . . . , n},
are continuously differentiable with respect to β ∈ (0, 1]. Moreover, the function pc(β) is
strictly decreasing for all β ∈ (0, 1].

6.3. Analysis of perfect competition equilibrium. In oligopoly models, the perfect
competition conjecture is understood by the following identities

ωi =
∂G

∂qi
= 0, ∀i ∈ {0, 1, . . . , n}. (44)

Within the framework studied in this paper, the latter identities, given by (44), yield
the following influence coefficients

νi = −
∂p

∂qi
= −

ωi

G′(p)
= 0, ∀i ∈ {0, 1, . . . , n}. (45)

Hence, the perfect competition conjecture for this particular case is given by

νt
i = 0, ∀i ∈ {0, 1, . . . , n}. (46)

As a consequence of Theorem 3.1, we have that for every β ∈ (0, 1], there exists uniquely
the exterior equilibrium for the perfect competition conjectures νt

i = 0, i ∈ {0, 1, . . . , n},
which defines the functions pt = pt(β) and qti = qti(β), i ∈ {0, 1, . . . , n}.

We can easily see that the perfect competition equilibrium is also a different equilibrium
state from the interior equilibrium since the consistency criterion’s system of Equations
(37) and (38) does not hold. Indeed,

1
n
∑

i=1

1

νt
i + ai

+K

> 0 = νt
0, (47)

and

1

1

(1− β)νt
0 + a0

+
νt
0 + a0

(1− β)νt
0 + a0

n
∑

j=1
j 6=i

1

νt
j + aj

+K

> 0 = νt
i , i ∈ {1, . . . , n}. (48)

Once again, for every β ∈ (0, 1], the perfect competition (exterior) equilibrium defines
the private firms’ profit functions πt

i(β) = πi(p
t(β), qti(β)), i ∈ {1, . . . , n}.

Theorem 6.4. Under Assumptions 2.2, 3.1 and 6.1, the exterior equilibrium’s functions
pt(β), qti(β), i ∈ {0, 1, . . . , n}, and the private firms’ profit functions πt

i(β), i ∈ {1, . . . , n},
are constant with respect to β ∈ (0, 1].
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6.4. Comparative analysis. To define an optimality criterion for the socialization level
β, in this section we compare the equilibrium price and private firms’ profits for the
consistent, Cournot, and perfect competition, conjectures.

Theorem 6.5. Under Assumptions 2.2, 3.1, and 6.1, the following inequalities hold:

lim
β↓0

pc(β) > lim
β↓0

p∗(β) > pt. (49)

In [22], it was proven, for the duopoly case, that the inequality pc(β) > p∗(β) is always
satisfied for any β ∈ (0, 1]. However, as shown in [23], for the case of oligopoly the latter
inequality might not hold when β ↑ 1, depending on the model’s parameters.

Theorem 6.6. Under Assumptions 2.2, 3.1, and 6.1, for any β ∈ (0, 1], if
∑n

i=1π
c
i (β)

≥
∑n

i=1 π
∗
i (β), then, it is satisfied that p∗(β) < pc(β).

Corollary 6.1. Suppose that Assumptions 2.2, 3.1, and 6.1 are true. If the relationships

lim
β↓0

n
∑

i=1

πc
i (β) > lim

β↓0

n
∑

i=1

π∗
i (β) and

n
∑

i=1

πc
i (1) <

n
∑

i=1

π∗
i (1) (50)

are valid, then, there exists the value β̂ ∈ (0, 1) such that
∑n

i=1 π
c
i

(

β̂
)

=
∑n

i=1 π
∗
i

(

β̂
)

and

p∗
(

β̂
)

< pc
(

β̂
)

.

Now, we say that the semi-public company is socially responsible and makes use of
subsidy policies to pay a monetary compensation to the consumers for the high price
that appears when the market is at the Cournot equilibrium state; otherwise, it has to
economically motivate the private firms to choose the consistent conjectural variations
behavior instead of the Cournot conjecture. However, if relationship (50) holds, there

exists the value β̂ (from Corollary 6.1) such that the accumulated net profit of every
private firm is the same in both, the consistent and the Cournot equilibriums, in which
case, the semi-public company can persuade the private producers to use the consistent
strategies (instead of the Cournot conjectures) so that the market price will not be as high
(which is a consequence of Theorem 6.6). Hence, the semi-public company can fulfill its
social responsibility without paying any kind of subsidies, thus, keeping its budget safe.
Therefore, we understand this socialization level β̂ as optimal.

Definition 6.2. If the conditions from Corollary 6.1 hold, the value of the parameter

β̂ ∈ (0, 1) such that
∑n

i=1 π
c
i

(

β̂
)

=
∑n

i=1 π
∗
i

(

β̂
)

, is called optimal socialization level.

Even though the existence of the optimal socialization level was proven for the semi-
mixed duopoly in [22] without the need of the condition (50), for the more general
oligopoly the situation when

∑n

i=1 π
c
i (β) >

∑n

i=1 π
∗
i (β) for every β ∈ (0, 1] can happen (as

shown in [23]) if the value a0 is much greater than the other values ai, which means that
the expenses of the public company are much greater than the expenses of the private
firms (i.e., the semi-public company is weaker than the private firms), in which case, the
optimal socialization level will not exist. For these situations, we would have to redefine
the optimality criterion for the socialization level, which is part of our future works.

7. Conclusions. In this paper, we extended the previously studied mixed oligopoly mod-
els within the conjectural variations equilibrium framework to the more general case when
the consumers’ demand function (or its derivative) is not necessarily continuous, while
the cost functions of the producers are quadratic. We provided results for the existence
and uniqueness of the conjectural variations (exterior) equilibrium for any feasible set of
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conjectures. Then, we introduced the consistency criterion to define the consistency of the
exterior equilibrium state, which is known as consistent conjectural variations (interior)
equilibrium and proved its existence.

After that, we examined the behavior of the (strong) interior equilibrium under the
changes of the active and passive demands in two experiments, describing the similarities
with the actual behavior of the market in real-life situations.

Finally, we considered the particular case of the semi-mixed oligopoly when the active
demand is zero and the active demand is an affine function to guarantee the uniqueness
of the consistent conjectural variations (interior) equilibrium and conducted a compara-
tive analysis between the latter with the Cournot and perfect competition equilibriums.
With the results obtained in this analysis, we formulated an optimality criterion for the
semi-public company’s socialization level β and proved its existence (with the additional
condition that the CCVE model can generate better profits for the private firms).

In our future work, we are planning to examine the qualitative behavior of the model’s
functions when the Cournot model is always better for the private firms to redefine the
optimality of the socialization level.
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