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Abstract. In this paper, we consider the problem of a two-degree-of-freedom control
system using double-feedback control with low sensitivity and robust stability for multiple-
input/multiple-output time-delay systems having a varying number of unstable poles. A
control system is desired to achieve low sensitivity such as reducing the effect of the un-
certainty for the output. In general, it is difficult for a control system with robust stability
to reduce low-sensitivity characteristics. Yamada shows a robust stability condition that
can achieve low-sensitivity characteristics for a plant having a varying number of poles.
Yu et al. expand the results of Yamada and propose a design method for two-degree-
of-freedom control systems for single-input/single-output minimum-phase systems using
double-feedback control with robust stability to reduce the effect of the uncertainty for the
output to be much smaller than that of the conventional two-degree-of-freedom control
system. However, a design method for a double-feedback control system for multiple-
input/multiple-output time-delay systems having a varying number of unstable poles has
not been considered. In this paper, we expand the results of Yu et al. and propose a
design method for a two-degree-of-freedom control system using double-feedback control
with low sensitivity and robust stability to reduce the effect of the uncertainty for the
output to be smaller than that of a conventional two-degree-of-freedom control system for
multiple-input/multiple-output time-delay systems having a varying number of unstable
poles.
Keywords: Multivariable system, Time-delay system, Low-sensitivity control, Sensiti-
vity function, Robust stability

1. Introduction. In this paper, we consider a design method for a two-degree-of-freedom
control system using double-feedback control with low sensitivity and robust stability for
multiple-input/multiple-output time-delay systems. The problem of stabilizing the control
system for uncertainty in a plant is called the robust stabilization problem, and has been
considered by several researchers [1, 2, 3, 4, 5, 6, 7]. The robust stabilization problem
was first formulated by Doyle and Stein [1]. In [1], Doyle and Stein show the robust
stability conditions for multiplicative uncertainty and additive uncertainty. Chen and
Desoer give a complete proof of the problem described by Doyle and Stein [2]. Kimura
solves the robust stabilization problem for single-input/single-output systems [8]. The
result by Kimura is expanded for multiple-input/multiple-output systems by Vidyasagar
and Kimura [9].
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According to previous studies [1, 2, 3, 4, 5, 6, 7], a complementary sensitivity function
needs to yield a small value to maintain stability for a large uncertainty. Making the
complementary sensitivity function small reduces the performance of control systems,
such as disturbance attenuation. To design a control system having a high performing
disturbance attenuation property and so on, we need to make the sensitivity function yield
a small value. However, we cannot reduce the sensitivity and complementary sensitivity
functions simultaneously because the sum of these functions is equal to 1. Therefore,
it is difficult to make a control system with both low sensitivity and robust stability.
However, low-sensitivity control does not always make the control system unstable for
systems with uncertainty. Maeda and Vidyasagar consider this an infinite gain margin
problem [10, 11]. Nogami et al. clarify the condition that the high-gain controller does
not make the system unstable and propose a design method [12]. Doyle et al. show the
condition that a low-sensitivity control system leads to robust stability for some class
of uncertainty from a specific viewpoint; a class of uncertainty exists such that the low-
sensitivity control ensures robust stability [13]. Although the class of uncertainty proposed
by Doyle et al. is suitable for a high-performance robust control system design, this class
of uncertainty cannot be applied to a system with a varying number of existing right-half
plane applications such that the number of unstable poles changes. Because the small
gain theorem exists, it is difficult to solve this problem to obtain the robust stability
condition for a system having an uncertain number of poles in the closed right-half plane.
Yamada considers this problem using some class of uncertainty [14]. Although Verma
also considers this problem similarly to Yamada, the class of uncertainty considered by
Yamada is different from that considered by Verma. In [15], Hoshikawa et al. clarify the
robust stability condition that achieves low sensitivity for multiple-input/multiple-output
minimum-phase time-delay systems with a varying number of poles in the closed right-half
plane from the same perspective as [14].
It is important to consider the control system structure so the control system has

low-sensitivity characteristics. It is well known that the internal model control (IMC)
structure is effective for low sensitivity [16]. However, the IMC structure cannot be applied
to systems having unstable poles. Zhou and Ren consider this problem and propose a
generalized internal model control (GIMC) structure [17]. Several researchers have used
the GIMC structure in their studies [18, 19, 20, 21]. In [18, 19, 20], the GIMC structure is
applied to fault-tolerant control for mechatronic systems [18, 19]. Okajima et al. propose
a compensator structure, which minimizes the error between the plant and nominal plant
[22]. By contrast, Yu et al. expand the result of [14] and propose a new control structure
called double-feedback control for single-input/single-output minimum-phase systems [23].
In [23], the design method of the two-degree-of-freedom control system using double-
feedback control with robust stability can reduce the effect of the uncertainty on the
output more than single-loop feedback two-degree-of-freedom control systems. However,
to our knowledge, no paper has considered low-sensitivity control using double-feedback
control for multiple-input/multiple-output time-delay systems having a varying number
of unstable poles. Some applications of time-delay systems have been reported, such as
the networked control system and cooperative control [24]. However, designing a control
system with robust stability for time-delay systems is difficult because the stability margin
is lost by the time delay.
In this paper, we expand the result of [14, 15, 23] and consider a design method for a two-

degree-of-freedom control system for multiple-input/multiple-output time-delay systems
having a varying number of unstable poles to reduce the effect of uncertainty for the
output. Such a system can be built using a low-sensitivity controller. This paper is
organized as follows. In Section 2, we explain the two-degree-of-freedom control system
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using double-feedback control and its associated problems. The proposed control system
using double-feedback control for a multiple-input/multiple-output time-delay system can
achieve both low sensitivity and robust stability. In addition, the control system proposed
in this paper makes the effect of the uncertainty for the output smaller than that of a
single-loop feedback two-degree-of-freedom control system. Hoshikawa et al. consider
a similar robust stabilization problem [15]. However, to our knowledge, no paper has
considered a control system with robust stability such that the effect of the uncertainty
for the output is much smaller than that of a single-loop feedback two-degree-of-freedom
control system from the perspective of the control structure. In Section 3, we clarify
the robust stability condition of the single-loop feedback two-degree-of-freedom control
system. In Section 4, we clarify the robust stability condition of the two-degree-of-freedom
control system using double-feedback control. Then, we clarify that the robust stability
condition of the double-feedback control system is related to minimizing a sensitivity
function. In Section 5, we compare the influence of the uncertainty for the two-degree-of-
freedom control system using double-feedback control and that of the single-loop feedback
control system. From the result of the comparison of the influence of the uncertainty
for the output, we clarify that the two-degree-of-freedom control system using double-
feedback control reduces the effect of the uncertainty for the output less than the single-
loop feedback two-degree-of-freedom control system. Finally, conclusions are given in
Section 6.

Notations

R the set of real numbers.

Rm×p the set of real number matrices.

C the set of complex numbers.

R(s) the set of real relational functions with s.

Rm(s) the set of m real relational vectors with s.

Rm×p(s) the set of m× p real relational matrices with s.

RH∞ the set of stable proper real relational functions.

RHm×p
∞ the set of m× p stable proper real relational matrices.[

A B

C D

]
the state-space realization of C(sI − A)−1B +D

∥ · ∥∞ H∞ norm of ·.
σ̄(·) a maximum singular value of ·.

2. Problem Formulation. In this section, we explain the two-degree-of-freedom control
system using double-feedback control for a multiple-input/multiple-output time-delay sys-
tem and the problem considered in this paper. The two-degree-of-freedom control system
using double-feedback control includes a single-loop feedback two-degree-of-freedom con-
trol system. To explain the two-degree-of-freedom control system using double-feedback
control, we first need to explain the single-loop feedback two-degree-of-freedom control
system and provide the results regarding its control system.

Consider a single-loop feedback two-degree-of-freedom control system in Figure 1. Here,
G0(s)e

−sT is a plant of the multiple-input/multiple-output time-delay systems. T > 0 is a
time-delay, and G0(s)e

−sT ∈ Rm×p(s) is assumed to be a strictly proper plant and to have
no zero in the closed right-half plane. F0(s) ∈ Rm×p(s) is also assumed to be strictly proper
and have no zero in the closed right-half plane. C1(s) ∈ Rp×m(s) is a feedback controller,
F1(s)e

−sT and Q1(s) ∈ RHp×p
∞ is a feed-forward controller. F1(s) ∈ RHm×p

∞ has no zero in
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Figure 1. The single-loop feedback two-degree-of-freedom control system

the closed right-half plane. In addition, Q1(s) satisfies F0(s)Q1(s) = F1(s). r ∈ Rp(s) is a
reference input, e1 ∈ Rm(s) is an error of the single-loop feedback two-degree-of-freedom
control system in Figure 1, u1 ∈ Rp(s) is the control input, and y ∈ Rm(s) is a controlled
output. The plant G0(s) is assumed to be stabilizable, detectable, and p ≤ m. The
state-space description of G0(s) is denoted by

G0(s) =

[
A B
C D

]
∈ Rm×p(s), (1)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and D ∈ Rm×p. A nominal plant of G0(s)e
−sT is

denoted by F0(s)e
−sT . The state-space description of F0(s) is written as

F0(s) =

[
Am Bm

Cm Dm

]
∈ Rm×p(s), (2)

where Am ∈ Rnm×nm , Bm ∈ Rnm×p, Cm ∈ Rm×nm , and Dm ∈ Rm×p. From the assumption
that G0(s) and F0(s) have no zero in the closed right-half plane, there exists no s0 ∈ C
in the closed right-half plane satisfying

rank

[
A− s0I B

C D

]
< n+ p, (3)

and no s̄0 ∈ C in the closed right-half plane satisfied

rank

[
Am − s̄0I Bm

Cm Dm

]
< nm + p. (4)

In general, the nominal plant G0(s)e
−sT is not equal to the nominal plant F0(s)e

−sT .
That is, an error between G0(s)e

−sT and F0(s)e
−sT exists. Using F0(s)e

−sT , G0(s)e
−sT is

assumed to be written by the form in

G0(s)e
−sT = (I +∆(s))F0(s)e

−sT , (5)

where ∆(s) is an uncertainty. Without loss of generality, I + ∆(s) is assumed to be of
normal full rank. To design a single-loop feedback two-degree-of-feedback control system
with robust stability in Figure 1 to reduce the effect of the uncertainty ∆(s) for the output
y, we adopt the following set of G0(s)e

−sT .

Definition 2.1. The plant G0(s)e
−sT defined by G0(s)e

−sT = (I + ∆(s))F0(s)e
−sT is

called an element of set Ω
(
F0(s)e

−sT ,W (s)
)
if the following expressions are valid.

1) The relative degree of G0(s) is equal to that of F0(s).
2) ∆(s) satisfies

σ̄
{
(I +∆(jω))−1∆(jω)

}
= σ̄

{
∆(jω)(I +∆(jω))−1

}
< |W (jω)| ∀ω ∈ R ∪ {∞}, (6)

where W (s) is a stable rational function.
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The first problem is to consider a design method for a single-loop feedback two-degree-
of-freedom control system in Figure 1 to reduce the effect of the uncertainty ∆(s) for the
output y.

To reduce the influence of the uncertainty for the output less than that of the single-
feedback two-degree-of-freedom control system in Figure 1, we consider the control system
shown in Figure 2. Here, the block diagram G1(s)e

−sT is shown in Figure 3. From Figure
2, Figure 1, and Figure 3, the control structure in Figure 2 includes the single-loop
feedback two-degree-of-freedom control system shown in Figure 1. This is the reason
why the control system in Figure 2 is called the double-feedback control system. Here,
C2(s) ∈ R(s)m×p is the feedback controller, and F2(s)e

−sT and Q2(s) ∈ RHp×p
∞ are the

feed-forward controllers. F2(s) ∈ RHm×p
∞ has no zero in the closed right-half plane. In

addition, Q2(s) satisfies F1(s)Q2(s) = F2(s). r ∈ Rp(s) is a reference input, e2 ∈ Rm(s) is
an error of the double-feedback control system in Figure 2, u2 ∈ Rp(s) is a control input,
and y ∈ Rm(s) is a controlled output.

Figure 2. The double-feedback control system

Figure 3. The block diagram of G1(s)e
−sT

The second problem is to consider the robust stability condition of the two-degree-of-
freedom control system in Figure 2 to reduce the effect of the uncertainty ∆(s) for the
output y. The third problem is to consider a design method for the two-degree-of-freedom
control system in Figure 2 such that the effect of the uncertainty ∆(s) for the output y
is reduced compared with that of the two-degree-of-freedom control system in Figure 1.

3. A Robust Stability Condition of the Single-Loop Feedback Two-Degree-
of-Freedom Control System. In this section, we propose a single-loop feedback two-
degree-of-freedom control system in Figure 1 for multiple-input/multiple-output time-
delay systems to reduce the effect of the uncertainty ∆(s) for the output y.
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To clarify the effect of the uncertainty ∆(s) for the output y in Figure 1, the transfer
matrix from r to y in Figure 1 is written as

y = (I +H1(s))F1(s)e
−sT r, (7)

where F1(s)e
−sT is the transfer matrix from r to y in the case of σ̄{∆(jω)} = 0 ∀ω ∈ R

and H1(s) is the transfer matrix written as

H1(s) =
{
I − S1(s)∆(s)(I +∆(s))−1

}−1
S1(s)∆(s)(I +∆(s))−1. (8)

Here, S1(s) is the sensitivity function in Figure 1 written by

S1(s) =
(
I + F0(s)C1(s)e

−sT
)−1

. (9)

From (7), (9), and (8), to reduce the effect of ∆(s) for y in Figure 1, the feedback controller
is designed to minimize ∥S1(s)W (s)∥∞ because the upper bound of ∆(s)(I + ∆(s))−1 is
W (s) from (6).
To maintain the internal stability condition, the single-feedback two-degree-of-freedom

control system in Figure 1 must be well-posed; therefore, the controller must be proper.
When the controller C1(s) is proper, the sensitivity function has the following property:

lim
ω→∞

σ̄{S1(jω)} = lim
ω→∞

{(
I + F0(jω)C1(jω)e

−jωT
)−1

}
= 1, (10)

because of the assumption that F0(s) is strictly proper. To satisfy (6) and (10), the
following relation is required:

lim
ω→∞

σ̄
{
(I +∆(jω))−1∆(jω)

}
< lim

ω→∞
|W (jω)| ≤ 1. (11)

From (11), we obtain the following theorem.

Theorem 3.1. A necessary condition that ∆(s) satisfies (6) and (11) is that I +∆(s) is
biproper. That is, when I +∆(s) is denoted by

I +∆(s) =

[
Ad Bd

Cd Dd

]
, (12)

the necessary condition that ∆(s) satisfies (6) and (11) is

rankDd = p. (13)

Proof: The proof of Theorem 3.1 is obtained by showing that if F0(s) is not biproper,
that is, (13) is not satisfied, then (11) is not satisfied. For simplicity, let ∆̄(s) = I+∆(s),
then

(I +∆(s))−1∆(s) = ∆̄−1(s)
(
∆̄(s)− I

)
= I − ∆̄−1(s). (14)

If I + ∆(s) is not biproper, but proper, then ∆̄−1(s) is not proper. This means that
I − ∆̄−1(s) is also improper. Thus, we have

lim
ω→∞

σ̄
{
(I +∆(jω))−1∆(jω)

}
= ∞. (15)

Therefore, (11) is not satisfied.
Conversely, if I + ∆(s) is improper, then ∆̄−1(s) is not biproper, but proper. This

means that I − ∆̄−1(s) is proper,

rank
[
lim
ω→∞

{
∆̄−1(s)

}]
< p,

and at least one of the eigenvalues of

lim
ω→∞

{
I − ∆̄−1(jω)

}
(16)
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is equal to 1. Thus, we have

lim
ω→∞

σ̄
{
(I +∆(jω))−1∆(jω)

}
≥ 1. (17)

This does not satisfy (11), thereby completing the proof of Theorem 3.1. �
When I +∆(s) is biproper, we have the following theorem.

Theorem 3.2. Assume that F0(s) and G0(s) is the strictly proper minimum-phase system.
If I +∆(s) is biproper, then the following expressions hold.

1) The number of zeros in the closed right-half plane of I +∆(s) is equal to the number
of poles in the closed right-half plane of F0(s).

2) The number of poles in the closed right-half plane of I+∆(s) is equal to that of G0(s).

To prove Theorem 3.2, the following lemmas are required.

Lemma 3.1. Let Ḡ(s) =

[
A B
C D

]
, where A ∈ Rn×n. If

rankḠ(s) = p, (18)

then

rank

[
A− sI B

C D

]
= n+ p. (19)

The matrix

[
A− sI B

C D

]
is called the system matrix of Ḡ(s).

Lemma 3.2. The zeros of the system consist of the following four elements.

1) All transmission zeros of the system.
2) All uncontrollable and unobservable poles of the system.
3) One or all uncontrollable and observable poles of the system.
4) One or all controllable and unobservable poles of the system.

Theorem 3.2 is shown by using the presented lemmas.
Proof: The proof of Theorem 3.2. To show the proof of Theorem 3.2, it is sufficient to

show only the following two expressions.

1) Zeros in the closed right-half plane of I +∆(s) consist of poles in the closed right-half
plane of the nominal plant F0(s). That is, without loss of generality, when I +∆(s) is
assumed to have no poles and some zeros in the closed right-half plane, the results show
that zeros in the closed right-half plane of I + ∆(s) are poles in the closed right-half
plane of F0(s).

2) Poles in the closed right-half plane of I +∆(s) consist of poles in the closed right-half
plane of the nominal plant G0(s). That is, without loss of generality, when I +∆(s) is
assumed to have some poles and no zeros in the closed right-half plane, the results show
that poles in the closed right-half plane of I + ∆(s) are poles in the closed right-half
plane of G0(s).

At first, the results show that zeros in the closed right-half plane of I +∆(s) are poles in
the closed right-half plane of F0(s). Without loss of generality, I + ∆(s) is assumed to
have no poles in the closed right-half plane and only some zeros in the closed right-half
plane. From Theorem 3.1, I +∆(s) is denoted as

I +∆(s) =

[
Ad Bd

Cd Dd

]
, (20)
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where Ad ∈ Rnd×nd , Bd ∈ Rnd×p, Cd ∈ Rp×nd , and Dd ∈ Rp×p are nonsingular. Therefore,
the state-space description of (I +∆(s))F0(s) is written by the form in

(I +∆(s))F0(s) =

 Ad BdCm BdDm

0 Am Bm

Cd DdCm DdCm

 . (21)

Let s0 be a right-half plane zero of I +∆(s). Then, we have

rank

[
Ad − s0I Bd

Cd Dd

]
< nd + p. (22)

From the presented equation, there exists [ ξ1 ξ2 ] ̸= 0 satisfying

[ ξ1 ξ2 ]

[
Ad − s0I Bd

Cd Dd

]
= 0. (23)

From (21) and (23), for the system matrix of (I +∆(s))F0(s), we have

[
ξ1 0 ξ2

]  Ad − s0I BdCm BdDm

0 Am − s0I Bm

Cd DdCm DdCm

 = 0.

This equation implies that s0 is also a zero of (I + ∆(s))Gm(s). From Lemma 3.2 and
the assumption that G0(s) has no zeros in the closed right-half plane, s0 is either an
uncontrollable pole of (I +∆(s))F0(s) or an unobservable pole of (I +∆(s))F0(s). Thus,
s0 is either a pole in the closed right-half plane of I + ∆(s) or F0(s). To assume that
I + ∆(s) and G0 have no poles in the closed right-half plane, s0 is a pole of F0(s).
The presented discussion shows that zeros in the closed right-half plane of I + ∆(s) are
equivalent to poles in the closed right-half of F0(s).
Next, it is shown that poles in the closed right-half plane of I + ∆(s) consist of poles

in the closed right-half plane of G0(s). Without loss of generality, I +∆(s) is assumed to
have no zeros in the closed right-half plane and some poles in the closed right-half plane.
Because Dd is nonsingular, the state-space description of F0(s) is rewritten as

F0(s) = (I +∆(s))−1G0(s)

=

[
Ad −BdD

−1
d Cd BdD

−1
d

−D−1
d Cd D−1

d

] [
A B
C D

]

=

 Ad −BdD
−1
d Cd BdD

−1
d C BdD

−1
d D

0 A B

−D−1
d Cd D−1

d C D−1
d D

 . (24)

Let s̄0 be a pole in the closed right-half plane of I +∆(s). From

rank

[ (
Ad −BdD

−1
d Cd

)
− s̄0 BdD

−1
d

−D−1
d Cd D−1

d

]

= rank

{[
I Bd

0 I

][
Ad − s̄0I 0

−D−1
d Cd D−1

d

]}

= rank

[
Ad − s̄0I 0

−D−1
d Cd D−1

d

]
< nd + p,
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s̄0 is also a zero of (I +∆(s))−1. Thus, there exists
[
ξ̄1 ξ̄2

]
satisfying[

ξ̄1 ξ̄2
] [ Ad − s̄0I 0

−D−1
d Cd D−1

d

]
= 0.

From this equation and (24), for the system matrix of (I +∆(s))−1G0(s), we have

[
ξ̄1 0 ξ̄2

] 
(
Ad −BdD

−1
d Cd

)
− s̄0 BdD

−1
d C BdD

−1
d D

0 A− s̄0I B

−D−1
d Cd D−1

d C D−1
d D

 = 0.

This implies that s̄0 is also a zero of (I+∆(s))−1G0(s). From Lemma 3.2 and the assump-
tion that F0(s) has no zeros in the closed right-half plane, s̄0 is either an uncontrollable
pole of (I +∆(s))−1G0(s) or an unobservable pole of (I +∆(s))−1G0(s). To assume that
F0(s) has no zeros in the closed right-half plane, s̄0 is either a zero of I +∆(s) or a pole
of G0(s). From the assumption that I +∆(s) has no zeros in the closed right-half plane,
s̄0 is a pole of G0(s). From the presented discussion, poles in the closed right-half plane
of I +∆(s) are those of G0(s).

We have completely proven the proof of Theorem 3.2. �
Then, the robust stability condition of the single-loop feedback two-degree-of-freedom

control system in Figure 1 for G0(s)e
−sT ∈ Ω

(
F0(s)e

−sT ,W (s)
)
is summarized as the

following theorem.

Theorem 3.3. Assume that the controller C1(s) stabilizes F0(s)e
−sT and that F1(s) ∈

RHm×p
∞ is a transfer matrix such that F0(s)Q1(s) = F1(s) satisfies Q2(s) ∈ RHp×p

∞ . The
single-feedback two-degree-of-freedom control system in Figure 1 is stable for Ω

(
F0(s)e

−sT ,

W (s)
)
if and only if the H∞ norm of S1(s)W (s) satisfies

∥S1(s)W (s)∥∞ < 1. (25)

The proof of Theorem 3.3 requires the following lemmas.

Lemma 3.3 (According to [25]). Suppose M ∈ RH∞ and γ < ∥M∥∞. Then, there
exists a σ0 (> 0) such that for any given σ ∈ [0, σ0], there exists a ∆(s) ∈ RH∞ with
∥∆(s)∥∞ < 1/γ such that det(I −M(s)∆(s)) has a zero on the axis Re(s) = σ.

Lemma 3.4. Let W (s) satisfy (11). F0(s) is assumed to have no zeros in the closed
right-half plane and the pm-th number of poles in the closed right-half plane. G0(s) is also
assumed to have no zeros in the closed right-half plane and the p0-th number of poles in
the closed right-half plane. Then, the Nyquist plot of det(I + ∆(s)) encircles the origin
(0, 0) p0 − pm times in the counter-clockwise direction.

Proof: The proof of Lemma 3.4. From the assumption that W (s) satisfies (11), I +
∆(s) is biproper. From Theorem 3.2, the number of zeros in the closed right-half plane
of I +∆(s) is equal to the number of poles in the closed right-half plane of F0(s), and the
number of poles in the closed right-half plane of I +∆(s) is equal to the number of poles
in the closed right-half plane of G0(s). From the assumption that G0(s) and F0(s) have
no zeros in the closed right-half plane, I +∆(s) has pm number of zeros and p0 number of
poles in the closed right-half plane. According to the argument principle, the Nyquist plot
of det(I+∆(s)) encircles the origin (0, 0) p−pm times in the counter-clockwise direction.
�

The proof of Theorem 3.3 is proven by using Lemma 3.4.
Proof: The proof of Theorem 3.3. The characteristic matrix of the single-loop feedback

two-degree-of-freedom control system in Figure 1 is given by I + C1(s)G0(s)e
−sT . If the
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Nyquist plot of det
(
I + C1(s)G0(s)e

−sT
)
for −∞ < ω < ∞ encircles the origin (0, 0)

p0 + pc times in the counter-clockwise direction, then the system in Figure 1 is robustly
stable. Here, pc1 means the number of poles in the closed right-half plane of C1(s) and
p0 means the number of poles in the closed right-half plane of F0(s). The determinant of
the characteristic polynomial is written as

det
(
I + F0(s)C1(s)e

−sT
)

= det
{
I + (I +∆(s))F0(s)C1(s)e

−sT
}

= det
[{

I +∆(s)F0(s)C1(s)e
−sT

(
I + F0(s)C1(s)e

−sT
)−1

}(
I + F0(s)C1(s)e

−sT
)]

= det(I +∆(s))det
{
I − (I +∆(s))−1∆(s)S1(s)

}
det

(
I + F0(s)C1(s)e

−sT
)
. (26)

From the assumption that C1(s) stabilizes F0(s)e
−sT , the Nyquist plot of det

(
I +

F0(s)C1(s)e
−sT

)
encircles the origin (0, 0) pm + pc1 times in the counter-clockwise di-

rection. Here, pm is the number of poles in the closed right-half plane of F0(s). Therefore,
if the Nyquist plot of

det(I +∆(s))det
{
I − (I +∆(s))−1∆(s)S1(s)

}
forall ∆(s) ∈ Ω

(
F0(s)e

−sT ,W (s)
)
encircles the origin (0, 0) p0 − pm times in the counter-

clockwise direction, then the single-feedback two-degree-of-freedom control system in Fig-
ure 1 is robustly stable. From Lemma 3.4, the Nyquist plot of det(I +∆(s)) encircles the
origin (0, 0) p0−pm times in the counter-clockwise direction. Therefore, the necessary and
sufficient condition that the single-loop feedback two-degree-of-freedom control system in
Figure 1 is robustly stable is that the Nyquist plot of

det
{
I − (I +∆(s))−1∆(s)S1(s)

}
does not encircle the origin (0, 0) any time.
The remaining problem is to prove that the presented condition is equivalent to (25).

We adopt the same procedure in [13] to prove this.
The sufficient part of the proof is as follows. Assume that ∥S1(s)W (s)∥∞ < 1. It is

clear that the Nyquist plot of

det
{
I − (I +∆(s))−1∆(s)S1(s)

}
does not encircle the origin (0, 0) even if we select any ∆(s) ∈ Ω

(
F0(s)e

−sT ,W (s)
)
.

The necessary part is as follows. From Lemma 3.3, if (25) does not hold, then (I +
∆(s))−1∆(s) ∈ RH∞ with∥∥(I +∆(s))−1∆(s)

/
W (s)

∥∥
∞ < 1

to let the Nyquist plot of

det
{
I − (I +∆(s))−1∆(s)S1(s)

}
cross at the origin (0, 0).
From the presented discussion, Theorem 3.3 is proven. �
Theorem 3.3 means that minimizing ∥S1(s)W (s)∥∞ ensures making the double-feedback

control system in Figure 2 robustly stable for G0(s)e
−sT ∈ Ω

(
F0(s)e

−sT ,W (s)
)
. That is,

the double-feedback control system can concurrently achieve robust stability and reduce
the effect of ∆(s) for y by satisfying Theorem 4.1.

4. A Robust Stability Condition of the Double-Feedback Control System. In
this section, we clarify the robust stability condition for the double-feedback control sys-
tem in Figure 2.
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To reduce the effect of uncertainty ∆(s) for the output y in the double-feedback control
system Figure 2, the transfer matrix from the reference input r to the output y in Figure
2 is written as

y = (I +H2(s))F2(s)e
−sT r, (27)

where F2(s)e
−sT is the transfer function from r to y in Figure 2 in the case of σ̄{∆(jω)} = 0

∀ω ∈ R and H2(s) is the transfer matrix written as

H2(s) =
{
I − S(s)∆(s)(I +∆(s))−1

}−1
S(s)∆(s)(I +∆(s))−1. (28)

Here, S(s) is the sensitivity function in Figure 2 written as

S(s) = S2(s)S1(s), (29)

where S2(s) is a transfer matrix written as

S2(s) =
(
I + F1(s)C2(s)e

−sT
)−1

. (30)

From (28) and (30), the double-feedback control system can reduce the effect of the
uncertainty ∆(s) for the output y by minimizing ∥S(s)W (s)∥∞. When C2(s) tends to
increase, (27) is closer to

y = F2(s)e
−sT r. (31)

Thus, there exists the possibility that the effect of ∆(s) for y in Figure 2 is smaller than
that in Figure 1 because it is related to not only the controller C1(s) but also the controller
C2(s).

The robust stability condition for G0(s)e
−sT ∈ Ω

(
F0(s)e

−sT ,W (s)
)
of the double-

feedback control system in Figure 2 is summarized as the following theorem.

Theorem 4.1. Assume that the conditions in Theorem 3.3 hold. In addition, the re-
sults show that C2(s) stabilizes F1(s)e

−sT , F2(s) ∈ RHm×p
∞ is a transfer matrix satisfying

F1(s)Q2(s) = F2(s), and Q2(s) ∈ RHp×p
∞ . The double-feedback control system in Figure 2

is stable for G0(s)e
−sT ∈ Ω

(
F0(s)e

−sT ,W (s)
)
if and only if the H∞ norm of S(s)W (s) is

satisfied

∥S(s)W (s)∥∞ = ∥S2(s)S1(s)W (s)∥∞ < 1. (32)

The proof of Theorem 4.1 is proven using Theorem 3.3, Lemma 3.3, and Lemma 3.4.
Proof: The proof of Theorem 4.1. The characteristic matrix of the double-feedback

control system in Figure 2 is given by

I +G0(s)e
−sT

{(
C1(s)F0(s)e

−sT +Q1(s)
)
C2(s) + C1(s)

}
.

If the Nyquist plot of

det
{
I +G0(s)e

−sT
{(

C1(s)F0(s)e
−sT +Q1(s)

)
C2(s) + C1(s)

}}
encircles the origin (0, 0) p0 + pc1 + pc2 times in the counter-clockwise direction, then the
double-feedback control system in Figure 2 is robustly stable. Here, pc1 means the number
of poles in the closed right-half plane of C1(s), pc2 means the number of poles in the closed
right-half plane of C2(s), and p0 means the number of poles in the closed right-half plane
of F0(s). The determinant of a characteristic polynomial is written as

det
{
I +G0(s)e

−sT
{(

C1(s)F0(s)e
−sT +Q1(s)

)
C2(s) + C1(s)

}}
= det

{
I + (I +∆(s))F0(s)e

−sT
{
(C1(s)F0(s)e

−sT +Q1(s))C2(s) + C1(s)
}}

= det {(I +∆(s))} det
{
I − (I +∆(s))−1∆(s)S2(s)S1(s)

}
det

{
I + F0(s)C1(s)e

−sT
}
det

{
I + F1(s)C2(s)e

−sT
}
. (33)
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From the assumption that C1(s) stabilizes F0(s)e
−sT , the Nyquist plot of

det
{
I + F0(s)C1(s)e

−sT
}

encircles the origin (0, 0) pm+pc1 times in the counter-clockwise direction, where pm is the
number of poles in the closed right-half plane of F0(s). In addition, from the assumption
that C2(s) stabilizes F1(s)e

−sT and F1(s)e
−sT ∈ RH∞, the Nyquist plot of

det
{
I + F1(s)C2(s)e

−sT
}

encircles the origin (0, 0) pc2 times in the counter-clockwise direction. Therefore, if the
Nyquist plot of

det {(I +∆(s))} det
{
I − (I +∆(s))−1∆(s)S2(s)S1(s)

}
for −∞ < ω < ∞ encircles the origin (0, 0) pm − p0 times in the counter-clockwise
direction, then the double-feedback control system in Figure 2 is stable for G0(s)e

−sT ∈
Ω
(
F0(s)e

−sT ,W (s)
)
. From Lemma 3.4, the Nyquist plot of det {(I +∆(s))} encircles the

origin (0, 0) pm−p0 times in the counter-clockwise direction. Therefore, the necessary and
sufficient condition for the double-feedback control system in Figure 2 for G0(s)e

−sT ∈
Ω
(
F0(s)e

−sT ,W (s)
)
is that the Nyquist plot of

det
{
I − (I +∆(s))−1∆(s)S2(s)S1(s)

}
does not encircle the origin any time. Thus, the remaining problem is to prove that the
presented condition is equivalent to (32). We adopt the same procedure in [13] to prove
this.
The sufficient part of the proof is as follows. Assume that ∥S2(s)S1(s)W (s)∥∞ < 1.

Thus, the Nyquist plot of

det
{
I − (I +∆(s))−1∆(s)S2(s)S1(s)

}
does not encircle the origin (0, 0), even if we select any G0(s)e

−sT ∈ Ω
(
F0(s)e

−sT ,W (s)
)
.

In addition, from Lemma 3.3, if (32) does not hold, then (I + ∆(s))−1∆(s) ∈ RH∞
with ∥∥(I +∆(s))−1∆(s)

/
W (s)

∥∥
∞ < 1

to let the Nyquist plot of

det
{
I − (I +∆(s))−1∆(s)S2(s)S1(s)

}
cross at the origin (0, 0).
From the presented discussion, Theorem 4.1 is proven. �
Theorem 4.1 means that minimizing ∥S(s)W (s)∥∞ ensures making the double-feedback

control system in Figure 2 robustly stable for G0(s)e
−sT ∈ Ω

(
F0(s)e

−sT ,W (s)
)
. That is,

the double-feedback control system with robust stability can reduce the effect of ∆(s) for
y. In the next section, we consider the design problem of the two-degree-of-freedom control
system in Figure 2 such that the effect of the uncertainty ∆(s) for the output y is reduced
compared with the two-degree-of-freedom control system in Figure 1 by comparing the
effects of the uncertainty ∆(s) for y in Figure 2 and that in Figure 1.

5. Comparison of the Effects of the Uncertainty ∆(s). In this section, we compare
the effects of the uncertainty ∆(s) for the output y between the single-loop feedback two-
degree-of-freedom control system in Figure 1 and the double-feedback control system in
Figure 2.
To compare the effects of the uncertainty ∆(s) for the output y between the single-

loop feedback two-degree-of-freedom control system in Figure 1 and the double-feedback
control system in Figure 2, F1(s) = F2(s) is needed. If the maximum singular value of
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H2(s) is less than that of H1(s), then the effect of ∆(s) for y in Figure 2 is less than that
in Figure 1.

From (8) and (28), the relationship between H1(s) and H2(s) is written as

H2(s) = (I −K(s))H1(s), (34)

where K(s) is given by

K(s) =
{
I − S(s)∆(s)(I +∆(s))−1

}−1
(I − S2(s))

=
{
I − S2(s)S1(s)∆(s)(I +∆(s))−1

}−1
(I − S2(s)). (35)

For the frequency range ω0 to satisfy σ̄{S(jω0)} < 1, σ̄{S2(jω0)} < 1, and σ̄{S1(jω0)} <
1, then we have

σ̄{H2(jω0)} ≤ σ̄{S2(jω0)}σ̄{H1(jω0)} < σ̄{H1(jω0)}. (36)

That is, for the frequency range ω0 to satisfy σ̄{S(jω0)} < 1, σ̄{S2(jω0)} < 1, and
σ̄{S1(jω0)} < 1, the effect of ∆(s) for y in Figure 2 is less than that in Figure 1. For the
frequency range ω1 to satisfy σ̄{S(jω1)} = σ̄{S1(jω1)} = σ̄{S2(jω1)} = 1, then we have

σ̄{H2(jω1)} =
[
σ̄
{
∆(jω1)(I +∆(jω1))

−1
}
− 1

]−1

×
[
σ̄
{
∆(jω1)(I +∆(jω1))

−1
}
− 1

]
σ̄{H1(jω1)}

= σ̄{H1(jω1)}. (37)

That is, for the frequency range ω1 to satisfy σ̄{S(jω1)} = σ̄{S1(jω1)} = σ̄{S2(jω1)} = 1,
the effect of ∆(s) for y in Figure 2 is equal to that in Figure 1.

From the presented discussion, if the maximum singular value of S(s), S1(s), and S2(s)
is less than 1, then the effect of ∆(s) for y in Figure 2 is less than that in Figure 1.

6. Conclusion. In this paper, we expanded the results of [14, 15, 23] and considered a
design method for a two-degree-of-freedom control system with low sensitivity and robust
stability for multiple-input/multiple-output time-delay systems having a varying number
of unstable poles to reduce the effect of the uncertainty for the output. We can design
a two-degree-of-freedom control system such that the effect of the uncertainty for the
output is less than that of the conventional two-degree-of-freedom control system by using
double-feedback control. Due to space limitations, we will show numerical examples and a
design procedure in another article. In addition, we will expand these results and examine
the control system using multiplex feedback control to design low-sensitivity control and
clarify the limitations of the control system using multiplex feedback control.
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