
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2020 ISSN 1349-4198
Volume 16, Number 2, April 2020 pp. 701–713

PVBTS: A NOVEL TASK SCHEDULING ALGORITHM
FOR HETEROGENEOUS COMPUTING PLATFORMS

Chao Jiang1,2, Jinlin Wang1,2 and Xiaozhou Ye1,∗

1National Network New Media Engineering Research Center
Institute of Acoustics, Chinese Academy of Sciences

No. 21, North 4th Ring Road, Haidian District, Beijing 100190, P. R. China
{ jiangc; wangjl }@dsp.ac.cn; ∗Corresponding author: yexz@dsp.ac.cn

2School of Electronic, Electrical and Communication Engineering
University of Chinese Academy of Sciences

No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, P. R. China

Received July 2019; revised November 2019

Abstract. Efficient task scheduling has always been one of the most critical issues for
high performance in heterogeneous computing. The heterogeneity of computation costs
on a given set of processors and the communication costs among processors increase the
complexity of the scheduling problem. Generally, the application consists of several tasks
with dependencies. If the computation costs, task dependencies and communication costs
are known a priori, the application can be represented by a static model, namely the di-
rected acyclic graphs (DAG) model. In this paper, we proposed a novel task scheduling
algorithm called penalty value based task scheduling (PVBTS) for application scheduling
problem. The PVBTS algorithm dynamically determines the execution order of tasks
according to the penalty value which is computed based on the heterogeneity of execution
completion time on a given set of processors. In each step, the PVBTS algorithm main-
tains a ready list including all the independent tasks, then selects the task with the highest
penalty value and maps it to a processor that gives the minimum execution completion
time of the task. The PVBTS algorithm uses randomly generated task graphs and some
real-world application task graphs to evaluate performance. The experimental results in-
dicate that the PVBTS algorithm outperforms some well-known scheduling algorithms
selected for the performance comparison in terms of schedule length (makespan) and ef-
ficiency.
Keywords: Heterogeneous computing, Task scheduling, Directed acyclic graph, Sched-
ule length, Efficiency

1. Introduction. A heterogeneous computing platform is composed of a diverse set of
system computing resources, which can be either local or distributed. It is usually used for
computationally intensive applications. A heterogeneous multi-core processor is a native
heterogeneous computing platform that integrates different types of processors, such as
CPU, GPU and FPGA in the same chip. A distributed heterogeneous computing platform
typically consists of a diverse set of distributed computing resources interconnected by
a high speed network. Cloud computer also follows a distributed and parallel system
and resource management and scheduling in cloud computing environment is becoming
one of the most complex issues [9]. In order to achieve high performance, the method
of scheduling the application tasks on various computing resources in parallel is very
important. The scheduling algorithms assign tasks to processors and aim to minimize
the execution time with the constraints of task precedence. In the static task scheduling

DOI: 10.24507/ijicic.16.02.701

701



702 C. JIANG, J. WANG AND X. YE

problem, it is common to use the DAG (directed acyclic graph) model which includes the
computation costs of tasks, the communication costs between tasks and the dependencies
among tasks to represent the application. The DAG scheduling problem has been proven
to be NP-complete [1].
In general, static scheduling algorithms can be classified into two major categories,

namely heuristic based and guided random search based algorithms. Heuristic-based
group is composed of three subcategories: list-based heuristics, cluster-based scheduling
heuristics, and replication-based scheduling heuristics. List-based scheduling heuristics
[2-8] typically consist of two phases. In the first phase, task priority is used to generate a
ready list of precedence-constrained tasks and the task with the highest priority is selected
for scheduling in each step. The second phase assigns tasks to the suitable processors
according to the predefined cost criterion. List-based scheduling heuristics can provide
a better performance with a lower time complexity than the other heuristics. Cluster-
based scheduling heuristics [10-15] are usually used for an unlimited number of processors.
A clustering heuristic requires additional steps to merge the task clusters generated by
the algorithm onto an unlimited number of processors and sort the execution order of
tasks within each processor. The main idea of the replication-based scheduling heuristics
[16-21] is to use the free time of the processor to duplicate the predecessor task, which
can decrease the inter-process communication overhead. However, it has a higher time
complexity than others, which leads to a lower efficiency. The guided random search based
algorithms mainly include genetic algorithms [24-27], which may have lower scheduling
length, but tend to have higher complexity.
In this paper, we propose a novel heterogeneous list scheduling heuristic called penal-

ty value based task scheduling (PVBTS) to solve static task scheduling problems for a
bounded number of fully connected heterogeneous processors. The remainder of this pa-
per is organized as follows. Section 2 gives the static task scheduling problem statement
and defines some parameters utilized in the algorithm. Section 3 introduces related work
in DAG scheduling and gives a brief overview of the scheduling algorithms selected for
performance comparison with the proposed PVBTS algorithm. Section 4 presents the
PVBTS algorithm in detail. Section 5 evaluates the performance of the algorithms based
on a large number of randomly generated task graphs and some real-world application
graphs. Section 6 concludes this paper.

2. Task-Scheduling Problem. In this paper, we consider a heterogeneous multi-core
platform with q heterogeneous computational processors, P = {p1, p2, . . . , pq}. The speeds
of the processors in the set are different from each other. It is assumed that all processors
are completely inter-connected without contention between them. In addition, we also
assume that computation can overlap with communication.
In the general form of static task scheduling, the application is represented by the

directed acyclic graph (DAG), G = (V,E), where V = {v1, v2, . . . , vn} denotes the set of
application tasks and E denotes the set of edges that represents the precedence constraint
between tasks. Task vj cannot start execution until task vi completes its execution in case
that vi is the parent task of vj. The data exchanges between tasks are represented by an
n×n matrix which is denoted by Data, where datai,j represents the amount of transmitted
data from the task vi to the task vj. The computation cost matrix is represented by an
n × q matrix W , where wi,m gives the estimated time to execute task vi on processor
pm. An example application graph with 10 nodes and the computation cost matrix are
presented in Figure 1.
The data transfer rates between any two processors are represented by a q × q matrix

B, where Bm,n gives the data transfer rate between processor pm and processor pn. The



PVBTS: A NOVEL TASK SCHEDULING ALGORITHM 703

Figure 1. An example task graph and computation time matrix

communication startup costs of processors are represented by a q-dimensional vector S,
where Sm gives the communication startup time of processor pm. The communication
cost of transferring data from task vi (scheduled on processor pm) to task vj (scheduled
on processor pn) is defined as:

ci,j = Sm +
datai,j
Bm,n

, (1)

when two tasks vi and vj are scheduled on the same processor, ci,j becomes zero because
it is negligible compared with interprocessor communication costs.

Let EST (vi, pm) and EFT (vi, pm) denote the earliest start time (EST) and earliest
finish time (EFT) of task vi on processor pm, respectively. For the entry task ventry,
EST (ventry, pm) = 0. The EFT and EST of other tasks in DAG can be computed recur-
sively by traversing the DAG downward starting from the entry node ventry using Equation
(2) and Equation (3), respectively.

EST (vi, pm) = max

{
avail[m], max

vj∈pred(vi)

(
AFT (vj) + cj,i

)}
, (2)

EFT (vi, pm) = EST (vi, pm) + wi,m, (3)

where pred(vi) is the set of immediate predecessor tasks of task vi and avail[m] is the
earliest time at which processor pm is ready for task execution. The inner max block in
Equation (2) represents the time when all data needed by task vi has arrived at processor
pm.

The schedule length (makespan) also termed as makespan of the task graph denotes
the execution completion time of the exit task. It is defined as:

makespan = max{AFT (vexit)}. (4)

The minimum earliest finish time (mEFT) of a task vi is the minimum value of the
EFT values of the task on a set of processors. The mEFT is defined as:

mEFT (vi) = min
pn∈P

{EFT (vi, pn)}. (5)



704 C. JIANG, J. WANG AND X. YE

The penalty value (PV) of a task vi represents the heterogeneity of execution completion
time on the processors. The penalty value is based on the concept that a task will be
penalized when it misses the opportunity to execute on the processor that could execute
it faster than all the other processors. Therefore, we assign a penalty value to each task
as the priority. A task with a higher PV value may increase the schedule length if not
scheduled with a higher priority. The PV of a task is defined as:

PV (vi) =

∑q
m=1EFT (vi, pm)

mEFT (vi)
. (6)

3. Related Work. A plethora of task scheduling algorithms have been proposed for
static application scheduling problems in heterogeneous computing platform. It is popular
to use list-based scheduling algorithm to solve static task scheduling problems. Many list
scheduling algorithms have been proposed such as mapping heuristic (MH) [3], dynamic
level scheduling (DLS) [5], heterogeneous earliest finish time (HEFT) [2], critical path
on a processor (CPOP) [2], performance effective task scheduling (PETS) [4], predicted
earliest finish time (PEFT) [8] and SD-based algorithm for task scheduling (SDBATS)
[6], heterogeneous scheduling algorithm with improved task priority (HSIP) [7].
Here, we provide a brief overview of some most cited list-based scheduling algorithms

selected for the performance comparison with the proposed PVBTS algorithm, namely
HEFT, PETS and PEFT.

3.1. Heterogeneous earliest finish time. The HEFT algorithm first calculates the
upward rank called ranku for each task based on the average computation and average
communication costs. The ranku of task vi represents the length of the longest path
(critical path) from task vi to the exit task, including the computational cost of task vi.
The ready list includes all the tasks sorted in descending order of ranku. Then the HEFT
algorithm calculates the earliest finish time (EFT) of each task in the processor selection
phase. Meanwhile, the insertion-based policy is employed to take full advantage of the
idle time slots if there exists. The selected task will be scheduled on the processor which
gives the minimum EFT of the task. For a given DAG with v tasks and q heterogeneous
processors, the time complexity of the HEFT algorithm is O

(
v2 × q

)
.

3.2. Performance effective task scheduling. The PETS algorithm first groups tasks
according to task level so that tasks in the same group can be executed in parallel. The
execution order of tasks in the same group is determined by the priority of each task which
is calculated based on the communication costs and the average computation cost of task.
The communication costs include the cost of receiving data from its predecessor task
(DRC) and transmitting data to all its successor tasks (DTC). Then the PETS algorithm
uses the same strategy as the HEFT algorithm for processor selection phase. The time
complexity of the PETS algorithm is O

(
v2 × (q × log v)

)
.

3.3. Predicted earliest finish time. The PEFT algorithm is based on optimistic cost
table (OCT) which is used for calculating task priority and mapping tasks to processors.
Task priority is determined by computing the average OCT on the given set of processors.
In processor selection phase, the optimistic earliest finish time (OEFT) which represents
the sum of the optimistic cost and earliest finish time is used instead of the earliest
finish time (EFT). Then the task is scheduled on the processor that gives the minimum
optimistic earliest finish time (OEFT). The time complexity of PEFT algorithm is O

(
v2×

q
)
.
Because of its good scheduling quality and low time complexity, HEFT algorithm has

become the most popular and widely used list scheduling algorithm. PETS algorithm



PVBTS: A NOVEL TASK SCHEDULING ALGORITHM 705

improves the calculation method of task priority by taking account of both data transfer
cost (DTC) and data receiving cost (DRC), so it has better scheduling quality than HEFT
algorithm. PEFT algorithm introduces the look ahead feature while maintaining the same
time complexity as HEFT algorithm. PEFT algorithm outperforms other list scheduling
algorithms such as HEFT and PETS in terms of scheduling length and efficiency. However,
the performance improvement of PEFT algorithm decreases as the size of task graph
increases, because the uncertainty of subtasks increases greatly for larger DAGs.

A large number of list scheduling algorithms calculate the priorities of tasks based on
the average computation cost on a given set of processors and the average communication
cost, which leads to a lack of consideration of the heterogeneity of the computation cost.
In addition, the task priority will not change even if a failure occurs at a particular
processor, which means the computing resource state at runtime is not taken into account.
To overcome these limitations, we proposed the PVBTS algorithm.

4. Proposed Algorithm. In this section, we present the proposed PVBTS algorithm in
detail. The PVBTS algorithm can be divided into two phases, one is the task prioritizing
phase and the other is the processor selection phase. These two phases are implemented
alternately. In the task prioritizing phase, we construct an independent task list and
dynamically determine the execution order of the tasks based on the predefined criterion,
namely the penalty value. Then we map the task with the highest PV value to the best
processor which minimizes the earliest finish time in the processor selection phase. Each
time a task is assigned to a processor, the ready list is updated and the priority of tasks
in the list is recalculated. The partial task duplication policy is employed to reduce the
schedule length.

4.1. Task prioritization phase. Some list scheduling algorithms group tasks according
to task levels. As a result, tasks are independent of each other at each level and can
be executed in parallel. However, this approach does not take account of the change
of the constraints of task precedence after mapping a task to the best processor. The
proposed algorithm constructs a dynamic ready task list initialized with the entry task.
An independent task refers to a task which has all its predecessor tasks finished execution.
All the independent tasks are inserted into the ready task list. The penalty value (PV)
is used as the prioritization criterion to determine the order of executing the tasks in the
ready list. The PV value of a task represents the heterogeneity of execution completion
time on the given set of processors. It is calculated using Equation (6). After a task is
assigned to a processor, it will be removed from the ready list. Then we check if a new
independent task is produced. If such a task exists, it will be added to the ready list. The
PV value of tasks in the ready list will be recalculated. This process continues until the
ready list becomes empty which represents all the tasks have been scheduled.

4.2. Processor selection phase. In the processor selection phase, the input is the ready
task list including all the current independent tasks. The task with the highest PV value
is selected and mapped to the processor which gives the minimum earliest finish time
(EFT). Then the selected task will be removed from the ready list.

To avoid the overhead caused by the task duplication, only the duplication of entry
task is taken into account. The entry task follows the duplication policy.

1) Choose the processor pm which gives the minimum earliest finish time (EFT) for the
entry task ventry;

2) Determine whether the entry task ventry needs to be duplicated on a particular proces-
sor pn according to the following condition. For each task vi ∈ succ(ventry), if Equation



706 C. JIANG, J. WANG AND X. YE

(7) is satisfied, then entry task duplication is performed on processor pn. Otherwise,
there is nothing to do.

wentry,n < wentry,m + centry,i, (7)

where succ(ventry) is the set of immediate successor tasks of task ventry and centry,i is
the communication cost between the entry task ventry and its successor task vi.

4.3. Detailed description of the PVBTS algorithm. In this section, we give the
description of each step of the PVBTS algorithm in detail through an example. Algorithm
1 shows the pseudo-code of the PVBTS algorithm.
The proposed PVBTS algorithm dynamically assigns priority to the tasks at each step

and also takes account of the state of computing resources at runtime. So the PVBTS
algorithm has better load balancing. The PVBTS algorithm can effectively tolerate mal-
functions of the processors in the heterogeneous computing platform and improves system
reliability. The complexity of PVBTS algorithm is O

(
v2 × (log v × q)

)
in terms of the

number of tasks v and the number of processors q.

Algorithm 1. The PVBTS Algorithm
Input: A DAG G = (V,E), set of tasks V , set of processors P
Output: Schedule result, makespan
1. Construct a ready list L and initialize with entry task.
2. while L is not empty do
3. for each task vi in L do
4. for each processor pm ∈ P do
5. Compute the EST (vi, pm) and EFT (vi, pm) values using

Equation (2) and Equation (3), respectively.
6. end
7. Compute the PV (vi) value using Equation (6).
8. end
9. Remove the task vi with the highest PV value from L.
10. if task vi is the entry task then
11. Use the entry task duplication policy as described in Section 4.2.
12. else
13. assign it to the processor pm which minimizes EFT (vi, pm).
14. end if
15. Update the independent tasks ready list L with the successors of task vi.
16. end while

For the given DAG in Figure 1, Table 1 presents the steps of PVBTS algorithm. Initially,
only the entry task T1 is added to the independent task ready list L. The penalty value
of T1 is 4.33 and the execution finish time on processors P1, P2 and P3 is 14, 16 and 9,
respectively. Therefore, task T1 will be assigned to processor P3. After that, the tasks
T2, T3, T4, T5 and T6 become independent and will be inserted into the ready list L.
Then we calculate the penalty value and EFT value for each task in L and remove the
task T6 which has the highest PV value 4.28 from L. The task T6 will be assigned to
P3 according to the EFT value. Here, the entry task duplication policy is checked when
calculating the EFT value. At each step, we check whether new tasks not in the list L
become independent after a task in L is scheduled. If there exist such tasks, the ready
list L is updated with these tasks. The above process will be repeated until all tasks in
DAG have been scheduled. The schedule length is calculated using Equation (5). For the



PVBTS: A NOVEL TASK SCHEDULING ALGORITHM 707

Table 1. Schedule produced by the PVBTS algorithm at each step

Step Ready Task List Penalty Values
Task EFT Processor

Selected P1 P2 P3 Selected
1 v1 4.33 v1 14 16 9 P3
2 v2, v3, v4, v5, v6 3.30, 3.28, 3.21, 3.89, 4.28 v6 27 32 18 P3
3 v2, v3, v4, v5 3.63, 3.64, 3.58, 3.19 v3 25 29 37 P1
4 v2, v4, v5, v7 3.11, 4.04, 3.36, 4.81 v7 32 63 59 P1
5 v2, v4, v5 3.31, 4.33, 3.61 v4 45 24 35 P2
6 v2, v5 3.44, 3.89 v5 44 37 28 P3
7 v2 3.12 v2 45 43 46 P2
8 v8, v9 3.65, 3.84 v9 77 55 79 P2
9 v8 3.17 v8 67 66 76 P2
10 v10 3.62 v10 98 73 93 P2

given DAG in Figure 1, the schedule lengths of the PVBTS, HEFT, PETS and PEFT are
73, 80, 77 and 86, respectively.

5. Experimental Results. This section presents a performance evaluation of the pro-
posed PVBTS in comparison with the HEFT, PETS and PEFT algorithms. For this
purpose, we make use of two kinds of graph sets, namely randomly generated application
graphs and some real-world applications graphs. First of all, we give the comparison
metrics for performance evaluation.

5.1. Comparison metrics. The performance evaluation of the algorithms is based on
the following comparison metrics.
1) Schedule length ratio (SLR)

The metric most commonly used to evaluate the performance of a schedule algorithm
on a single DAG is the schedule length of the schedule result. Since a large set of task
graphs with different properties is used, it is necessary to normalize the schedule length
to a lower bound, which is called the schedule length ratio (SLR) [2]. The SLR is defined
as follows:

SLR =
makespan∑

vi∈CPmin
minpm∈P{wi,m}

, (8)

where CPmin represents the critical path of the given DAG.
2) Speedup

This speedup value is defined as the ratio of the sequential execution time to the parallel
execution time [2]. The sequential execution time is the smallest value of the execution
time obtained by executing all the tasks in DAG on one processor. The parallel execution
time, also known as scheduled length or makespan, is the execution completion time of
the application graph. The speedup value is computed as follows:

Speedup =
minpm∈P

{∑
vi∈V wi,m

}
makespan

. (9)

3) Efficiency
The efficiency is defined as the ratio of the speedup value to the number of processors

used for scheduling the task graph.

Efficiency =
Speedup

Number of Processors
. (10)



708 C. JIANG, J. WANG AND X. YE

5.2. Randomly generated task graph. For the performance evaluation, we first imple-
ment a random graph generator to generate application DAGs with the same parameters
for synthetic DAG generation as described in [2,8]. We create a pseudo entry (exit) task
with zero computation cost and communication cost if there is more than one entry (exit)
task in the randomly generated application graph. The following parameters determine
the different characteristics of the randomly generated task graphs and are defined as:

• n: Number of application tasks in the DAG;
• α: This parameter affects the shape of the DAG. The height of a DAG is randomly
selected from a uniform distribution with the mean value equal to

√
n/α and the

width of each level is randomly selected from a uniform distribution with mean value
equal to

√
n × α [8]. Therefore, a high value of α leads to a fat DAG with a high

parallelism between tasks;
• density: This parameter determines the out-degree of tasks, which means a higher
value leading to more edges;

• β: This parameter represents the heterogeneity factor, which affects the range per-
centage of computation costs on processors. A higher value of β causes a higher
variation in a task’s computation costs among the processors. The average com-
putation time of each task vi is selected randomly from a uniform distribution with
range [0, 2×wDAG] [2]. Then the computation time of each task vi on each processor
pm is randomly set using the following relationship:

wi ×
(
1− β

2

)
≤ wi,m ≤ wi ×

(
1 +

β

2

)
. (11)

• CCR: Communication to computation ratio, which is defined as the ratio of the sum
of the edge weights to the sum of the node weights in a DAG. A low value of CCR
represents a computation-intensive application;

• p: This parameter represents the number of processors used for scheduling the task
graphs.

In our experiment, the ranges of values for these parameters are given in the following
sets.

• n = [20, 50, 100, 200, 400],
• α = [0.2, 0.5, 1, 1.5, 2],
• density = [1, 2, 3, 4, 5],
• β = [0.2, 0.5, 1, 1.5, 2],
• CCR = [1, 2, 3, 4, 5],
• p = [2, 4, 6, 8, 10].

These combinations can generate 15625 unique DAGs. We generate 20 different random
graphs with various node and edge weights for each combination of the parameters. Thus,
312500 random graphs are used in the experiment. In our experiment, n, CCR, and p
are selected for performance comparison. The other parameters are used for generating
task graphs with various characteristics to illustrate the results statistically. For the
comparison between PVBTS and selected scheduling algorithms, we calculate the average
value of the performance metrics defined in Section 4.1 in terms of the selected parameter.
Figure 2(a) and Figure 2(b) show the average SLR for all algorithms as a function of the

DAG size and CCR value, respectively. The results show that PVBTS and HEFT present
similar results when the CCR is of a low value. However, with the increasing of CCR
value, the PVBTS algorithm outperforms the other selected scheduling algorithms used in
the evaluation. In other words, the PVBTS algorithm is more suitable for communication
intensive applications. As for the task graph size, the PVBTS outperforms better for



PVBTS: A NOVEL TASK SCHEDULING ALGORITHM 709

(a) (b)

Figure 2. Average SLR for random graphs as a function of (a) DAG size
and (b) CCR value

Figure 3. Efficiency for random graphs as a function of number of processors

larger DAGs. Figure 3 shows the comparison result of the efficiency as a function of
the number of processors. We can find out that the PVBTS performs much better than
the other list scheduling algorithms for a small number of processors, but efficiency of
PVBTS will decrease as the number of processors increases. This is because PVBTS only
considers all the independent tasks in each step, regardless of the overall structure of the
task graph and the impact of the processor selection of the task on its child tasks.

The experiment results show that PVBTS has the lowest average SLR and has better
performance improvement for task graphs with higher CCR value or larger DAG size.
That is to say, the proposed PVBTS algorithm is more suitable for task graph with
complex structure. This is because PVBTS dynamically determines the execution order
of tasks based on the heterogeneity of computation cost. In addition, we consider the
real-time state of computing resources at each step of the PVBTS algorithm so that we
can deal with uncertain situations better and tolerate processor failures.



710 C. JIANG, J. WANG AND X. YE

5.3. Real-world application graphs. In order to prove the usefulness of the proposed
algorithm, a few of real-world applications such as, Fast Fourier Transform [2] and Mon-
tage [22,23], are used for the performance evaluation of the algorithms. Since the structure
of these applications is known, we simply use various values for parameters such as CCR
and heterogeneity factor.

5.3.1. Fast Fourier transform. The FFT task graph is composed of two parts: the re-
cursive call tasks and butterfly operation tasks. For an FFT application graph with N
points, the total number of recursive call tasks and butterfly operation tasks are equal to
2× (N − 1) + 1 and N × log2N , respectively.
In our experiments, we change the value of input points from 2 to 32 with an increment

of powers of 2, which generates task graphs with various size from the smallest size 5 to
the largest size 223. Because of known structure of FFT task graph, only the CCR, β,
and number of processors parameters are considered for our evaluation.
The comparison results of the average SLR against the FFT input points and CCR

values are shown in Figure 4(a), and Figure 4(b), respectively. For the evaluation of effi-
ciency, we set the size input points to 16 and change the number of processors from 2 to
10. Figure 5 shows the result that the efficiency improvement of the PVBTS algorithm
decreases with the increasing number of processors. It is clear that the PVBTS algorithm
reveals performance improvement over all the other selected algorithms in terms of average
SLR and efficiency. We can conclude that PVBTS exhibits better performance improve-
ment for task graphs with the same characteristics as FFT and that are characterized by
having all tasks belonging to a critical path.

(a) (b)

Figure 4. Average SLR for FFT application graphs as a function of (a)
input points and (b) CCR value

5.3.2. Montage. The Montage is used for generating astronomical image mosaics of the
sky. Because the structure of Montage task graph is fixed as well, we use the same
parameters as FFT task graph to generate task graphs for performance evaluation, namely
the CCR value, heterogeneous factor β and number of processors. In our evaluation,
we consider Montage task graphs with 50 and 100 nodes. First, we set the number of
processors to 4. For each value of the CCR in the range between 1 to 5, the average SLR
values obtained by PVBTS, PEFT, PETS and HEFT algorithms are shown in Figure 6.
To evaluate the efficiency, we keep the CCR value at 3 and change the number of processors



PVBTS: A NOVEL TASK SCHEDULING ALGORITHM 711

Figure 5. Efficiency for FFT application graphs as a function of number of processors

Figure 6. Average SLR for Montage application graphs as a function of
CCR value

from 2 to 10. Figure 7 shows the efficiency comparison result for various processor number.
The results show that for real-world Montage application graphs, PVBTS outperforms
the PEFT, PETS and HEFT algorithms in terms of the average SLR and efficiency.

6. Conclusions. In order to take full advantage of the high performance of heterogeneous
computing platforms, efficient and robust scheduling algorithms are necessary. A novel
task scheduling algorithm called penalty value based task scheduling (PVBTS) is proposed
in this paper. The scheduling list of the PVBTS algorithm is not generated statically
according to the predefined priority criterion. At each step of the algorithm, the task
ready list contains all independent tasks. For each task in the list, the penalty value of
the task is calculated based on the heterogeneity of the execution completion time of the
task on the diverse set of processors and the task with the highest penalty value is selected
and scheduled first. The proposed algorithm considers the state of computing resources
when calculating priority and assigning tasks to processors, so it performs well in load
balancing. Besides, the entry task duplication policy is used to reduce the scheduling



712 C. JIANG, J. WANG AND X. YE

Figure 7. Efficiency for Montage application graphs as a function of num-
ber of processors

length. Since the PVBTS algorithm dynamically assigns priority to tasks, it can be more
efficient for uncertain situations in a heterogeneous computing platform. The complexity
of the PVBTS algorithm for mapping v tasks to q processors is O

(
v2 × (log v × q)

)
.

The performance comparison is based on a large set of randomly generated task graphs
with various characteristics and several task graphs of real-world applications, such as
Fast Fourier Transform and Montage. The comparative study reveals that the PVBTS
algorithm is an efficient list scheduling algorithm, which shows performance improvement
for DAG scheduling in terms of scheduling length and efficiency compared with other
existing algorithms such as HEFT, PETS and PEFT.

Acknowledgment. This work is partially supported by Strategic Leadership Project of
Chinese Academy of Sciences: SEANET Technology Standardization Research System
Development (Project No. XDC02010701).

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

[2] H. Topcuoglu, S. Hariri and M. Y. Wu, Performance effective and low complexity task scheduling
algorithm scheduling for heterogeneous computing, IEEE Transactions on Parallel and Distributed
Systems, vol.13, no.3, pp.260-274, 2002.

[3] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys and B. Yao, A taxonomy for describing matching and scheduling heuristics for mixed-machine
heterogeneous computing systems, Proc. of the 17th IEEE Symposium on Reliable Distributed Sys-
tems, pp.330-335, 1998.

[4] E. Ilavarasan, P. Thambidurai and R. Mahilmannan, Performance effective task scheduling algorithm
for heterogeneous computing system, The 4th International Symposium on Parallel and Distributed
Computing (ISPDC’05), pp.28-38, 2005.

[5] G. C. Sih and E. A. Lee, A compile-time scheduling heuristic for interconnection-constrained het-
erogeneous processor architectures, IEEE Transactions on Parallel and Distributed Systems, vol.4,
no.2, pp.75-87, 1993.

[6] E. U. Munir, S. Mohsin, A. Hussain, M. W. Nisar and S. Ali, SDBATS: A novel algorithm for task
scheduling in heterogeneous computing systems, 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and PhD Forum, Cambridge, MA, pp.43-53, 2013.



PVBTS: A NOVEL TASK SCHEDULING ALGORITHM 713

[7] G. Wang, H. Guo and Y. Wang, A novel heterogeneous scheduling algorithm with improved task
priority, 2015 IEEE the 17th International Conference on High Performance Computing and Com-
munications, 2015 IEEE the 7th International Symposium on Cyberspace Safety and Security, and
2015 IEEE the 12th International Conference on Embedded Software and Systems, New York, NY,
pp.1826-1831, 2015.

[8] H. Arabnejad and J. G. Barbosa, List scheduling algorithm for heterogeneous systems by an opti-
mistic cost table, IEEE Transactions on Parallel and Distributed Systems, vol.25, no.3, pp.682-694,
2014.

[9] M. Al Rawajbeh, Performance evaluation of a computer network in a cloud computing environment,
ICIC Express Letters, vol.13, no.8, pp.719-727, 2019.

[10] A. Niyom and P. Sophatsathit, An energy-efficient process clustering assignment algorithm for dis-
tributed system, Simulation Modelling Practice and Theory, pp.95-111, 2014.

[11] U. Boregowda et al., A hybrid task scheduler for DAG applications on a cluster of processors, 2014
the 4th ICACC, pp.143-146, 2014.

[12] T. Yang and A. Gerasoulis, DSC: Scheduling parallel tasks on an unbounded number of processors,
IEEE Transactions on Parallel and Distributed Systems, vol.5, no.9, pp.951-967, 1994.

[13] B. Cirou and E. Jeannot, Triplet: A clustering scheduling algorithm for heterogeneous systems, The
30th International Workshops on Parallel Processing (ICPP 2001 Workshops), pp.231-236, 2001.

[14] J. Liou and M. A. Palis, An efficient clustering heuristic for scheduling DAGs on multiprocessors,
Proc. of Symp. Parallel and Distributed Processing, 1996.

[15] D. Bozdag, U. Catalyurek and F. Ozguner, A task duplication based bottom-up scheduling algorithm
for heterogeneous environments, Proc. of the 20th International Parallel and Distributed Processing
Symposium 2006 (IPDPS 2006), 2006.

[16] Y.-C. Lee and A. Zomaya, A novel state transition method for metaheuristic-based scheduling in
heterogeneous computing systems, IEEE Transactions on Parallel and Distributed Systems, vol.19,
no.9, pp.1215-1223, 2008.

[17] S. Darbha and D. P. Agrawal, Optimal scheduling algorithm for distributed-memory machines, IEEE
Transactions on Parallel and Distributed Systems, vol.9, no.1 pp.87-95, 1998.

[18] M. Kun and C. Ch, An adaptive scheduling algorithm for scheduling tasks in computational grid,
Proc. of the 2008 the 7th International Conference on Grid and Cooperative Computing, pp.24-26,
2008.

[19] I. Ahmad and Y. Kwok, A new approach to scheduling parallel programs using task duplication,
Proc. of Int’l Conf. Parallel Processing, vol.2, pp.47-51, 1994.

[20] B. Kruatrachue and T. G. Lewis, Grain size determination for parallel processing, IEEE Software,
pp.23-32, 1988.

[21] Y. Chung and S. Ranka, Applications and performance analysis of a compile-time optimization
approach for list scheduling algorithms on distributed memory multiprocessors, Proc. of Supercom-
puting, pp.512-521, 1992.

[22] G. B. Berriman, J. C. Good, A. C. Laity, A. Bergou, J. Jacob, D. S. Katz, E. Deelman, C. Kesselman,
G. Singh, M.-H. Su and R. Williams, Montage: A grid enabled image mosaic service for the national
virtual observatory, Proc. of Astronomical Data Analysis Software and Systems (ADASS) XIII,
pp.593-596, 2004.

[23] E. Deelman, G. Singh, M. H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,
J. Good, A. Laity, J. C. Jacob and D. S. Katz, Pegasus: A framework for mapping complex scientific
workflows onto distributed systems, J. Scientific Programming, vol.13, no.3, pp.219-237, 2005.

[24] S. G. Ahmad, C. S. Liew, E. U. Munir et al., A hybrid genetic algorithm for optimization of schedul-
ing workflow applications in heterogeneous computing systems, Journal of Parallel and Distributed
Computing, vol.87, pp.80-90, 2015.

[25] C. Yang and B. Yang, Parallelization of genetic algorithm based on cilk technology, Journal of
Network New Media, no.5, pp.54-60, 2012.

[26] M. Akbari, H. Rashidi and S. H. Alizadeh, An enhanced genetic algorithm with new operators for task
scheduling in heterogeneous computing systems, Engineering Applications of Artificial Intelligence,
vol.61, pp.35-46, 2017.

[27] Y. Xu, K. Li, T. T. Khac and M. Qiu, A multiple priority queueing genetic algorithm for task
scheduling on heterogeneous computing systems, 2012 IEEE the 14th International Conference on
High Performance Computing and Communication & 2012 IEEE the 9th International Conference
on Embedded Software and Systems, Liverpool, pp.639-646, 2012.


