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Abstract. The aim of this work is to develop a method of distance metric learning
for self-organizing maps. We first conducted an investigation in a multi-view learning
setting, in which Mahalanobis metrics were determined so that two (or more) views
reached a consensus in latent variable estimation. We examined two approaches of multi-
view learning: co-training and ensemble. Although both approaches worked as expected,
our results suggested that the co-training approach performed better. We further extended
the method to a single-view learning setting by introducing the concept of pseudo multi-
view learning.
Keywords: Metric learning, Multi-view learning, Self-organizing map, Co-training

1. Introduction. The distance (or similarity) metric is crucially important in most ma-
chine learning methods, and measures the differences (or similarities) between data points,
or between data and a model. In the case of the self-organizing map (SOM), the distance
metric is involved in determining the winning nodes, and the Euclidean distance is typi-
cally used, sometimes without considering the validity. If the metric is changed, then the
winning nodes are determined differently, and as a result, the SOM generates a different
map. Therefore, using appropriate distance metrics is important for obtaining a reliable
result.

Metric learning is an area of machine learning studies that aims to estimate an appro-
priate metric for learning tasks [17, 25, 28]. The aim of this work is to develop a method
of metric learning in manifold modeling, particularly in SOMs. Thus, the task of the
proposed method is to estimate an appropriate metric as the Mahalanobis distance, in
parallel with modeling the dataset using a nonlinear manifold. Our main issue is how
to estimate the appropriate metric in an unsupervised manner. In unsupervised learn-
ing, not only is the desired output not given but also the criteria for determining the
desired metrics. Therefore, metric learning in unsupervised learning, such as the SOM,
is a challenging issue. Most past works on metric learning in the SOM required auxiliary
information, such as labels [12, 13, 14, 20] or episodes [16]. In this work, we propose a
method of unsupervised metric learning without using auxiliary information.

To manage this problem, we adopt a method of multi-view learning. When data vectors
can be naturally divided into several perspectives, which are called views, the metrics of
the views can be determined so that they produce as similar results as possible; that is, by
regarding the learning result of a view as the desired output for other views, it is possible
to change the unsupervised task into a supervised task. As a result, we can obtain a
compromise of multiple views, that is, a consensus. Such an approach is referred to as
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co-training in the area of multi-view learning [23, 27]. Thus, the first aim of this study is
to develop a method for distance metric learning of the SOM under multi-view settings
using the co-training approach. Because the method is a nonlinear extension of canonical
correlation analysis (CCA), it is referred to as CCA-SOM in this paper. Then, we extend
CCA-SOM for single-view cases in which views are not defined, which is referred to as
metric learning SOM (ML-SOM). This is the second aim of this study. For this purpose,
we introduce the concept of a pseudo multi-view, in which data components are divided
into views randomly. Interestingly, the approach of ML-SOM has many similarities to the
dropout method in deep learning [10, 22].

This paper is organized as follows. In Section 2, related works are introduced. In
Section 3, the theory and algorithms of the proposed methods are described, and the sim-
ulation results are shown in Section 4. In Sections 5 and 6, the discussion and conclusion
are presented.

2. Related Works.

2.1. Distance metric learning for SOM. Because the SOM is an unsupervised learn-
ing algorithm, metric learning for the SOM is not an easy task. Most existence methods
have been developed so that some auxiliary data are provided [12, 13, 14, 20]; that is,
under the scenarios in which labels are given to all or part of the data, these methods es-
timate the metrics so that data with the same/different labels are mapped closely/apart.
Therefore, these are classified as semi-supervised learning with respect to metric learning.

Another type of metric learning for the SOM is the adaptive subspace SOM (ASSOM)
[16]. In the ASSOM, multiple data are assumed to be observed from each target object.
Such a subset of data obtained from the same target is called an episode in the ASSOM.
The idea of the ASSOM has been further extended to nonlinear metrics [7]. In these cases,
it is possible to estimate the appropriate metric by regarding the episodes as auxiliary
information.

More recently, Arnonkijpanich et al. proposed a method of metric learning for the SOM
[2], which does not require auxiliary information. They generalized the objective function
of the SOM and derived the algorithm theoretically. We refer to this type of metric
learning as an ensemble approach. In this study, we use a different type of approach to
metric learning, that is, co-training. In contrast to the ensemble approach, the co-training
approach intentionally collapses the objective function, thereby avoiding undesirable local
optima caused by a single objective function.

2.2. Multi-view learning of subspace methods. Multi-view learning is another para-
digm of machine learning [23, 27]. It aims to improve learning performance by integrating
datasets observed from different views. Such integration is often led by consensus, which
represents common factors that are consistent among the views. To obtain a consensus,
one of the representative approaches is co-training [3]. For the V -view dataset, the co-
training method uses V -learners, each of which learns the data of the corresponding view.
These learners are trained so that discrepancies between V outputs are minimized. By
contrast, a conventional approach that maximizes the joint likelihood of views is also used
in multi-view learning, particularly in Bayesian methods. In this paper, we refer to this
as an ensemble approach. Both co-training and ensemble approaches are examined in this
work.

Among unsupervised multi-view learning approaches, multi-view subspace methods aim
to estimate the subspace shared by the views as the consensus. CCA is the most basic
and representative method, and estimates the projections that maximize the correlation
between two views [11]. In CCA, the projections can be regarded as the metrics of the
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views. Extensions of CCA have been proposed, such as Bayesian CCA [15] and kernel
CCA [1]. For nonlinear subspace methods, the Gaussian process latent variable model
(GPLVM) [18] has been extended for multi-view learning, such as shared GPLVM (sG-
PLVM) [6], manifold relevance determination [5], and factorized orthogonal latent spaces
[21]. However, unlike CCA, they are not designed to estimate the metrics. Additionally,
it would not be easy to extend these methods to metric learning because they assume the
identical and independent distribution (i.i.d.) of data components. Therefore, it would
be difficult to use these methods for our case. It should be also noted that GPLVM-
based methods are classified as the ensemble approach because they are formulated under
Bayesian settings.

In this work, we use the generalized SOM for manifold modeling. Unlike GPLVM, SOM
allows the use of both co-training and ensemble approaches. Additionally, the SOM does
not assume the i.i.d. of data components. Therefore, the SOM seems to be a good platform
for studies on both multi-view learning and metric learning. It should be emphasized that
our purpose is not only to develop metric learning for SOMs but also a general principle
of metric learning in manifold modeling.

3. Theory and Algorithms. In this section, we first describe metric learning methods
of the SOM for a multi-view dataset: CCA-SOM. Our algorithm is based on the theoreti-
cal generalization of the SOM [4, 8, 9, 19, 24]. Thus, it is a continuous manifold modeling
method based on the kernel smoothing approach rather than the conventional topology-
preserving clustering method. We compare two types of CCA-SOM algorithms based on
ensemble and co-training approaches. Then, we propose metric learning methods of the
SOM for a single-view dataset: ML-SOM. We also compare two types of ML-SOM based
on ensemble and co-training approaches.

3.1. Problem formulation. Suppose that we have N target objects. In the case of a

multi-view setting, they are observed from V views. Let x
(v)
n ∈ X(v) ≡ RD(v)

be the data
of the n-th object measured from the v-th view. All the data of the n-th object is denoted

by xn :=
⊕V

v=1 x
(v)
n . Let Z be the low-dimensional latent space and let zn be the latent

variable of the n-th object. In this paper, Z is a unit square space, that is, Z = [0, 1]L. The

aim of CCA-SOM is to model the data distribution as x
(v)
n

∣∣∣zn ∼ N
(
f (v)(zn),M(v)−1

)
,

where f (v) : Z → X(v) is a smooth embedding, and M(v) is the precision matrix, which
represents the metric of the v-th view. The prior distribution of z is assumed to be

uniform over Z; thus, p(z) = 1. Thus, the task of CCA-SOM is to estimate
{
zn

}N

n=1
and{

f (v)
}V

v=1
from

{
xn

}N

n=1
, in addition to estimating the metrics

{
M(v)

}V

v=1
.

By contrast, in the single-view setting, we have a single dataset only. Thus, the task of

ML-SOM is to estimate
{
zn

}N

n=1
, f : Z → X, and M(v) from

{
xn

}N

n=1
.

3.2. Objective functions. Many preceding works have shown that the objective func-
tion of the SOM is given by

L(Z, f) = −1

2

N∑
n=1

∫
Z

h(ζ, zn) ∥xn − f(ζ)∥2 dζ, (1)

where Z = (z1, . . . , zn) and h(ζ, z) is the neighborhood function [4, 8, 9, 19, 24]. This
objective function represents the log-likelihood when the posterior of zn is given by the
neighborhood function. Thus, we assume that

∫
Z

h(ζ, z) dζ = 1 without loss of generality.
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This objective function can be easily extended for V -view data with the Mahalanobis
distance as

L
(
Z,

{
f (v)

}
,
{
M(v)

})
=

V∑
v=1

N∑
n=1

∫
Z

h(ζ, zn)

[
−1

2

∥∥x(v)
n − f (v)(ζ)

∥∥2

M(v) +
1

2
ln

∣∣detM(v)
∣∣] dζ. (2)

∥ · ∥M(v) is the norm of the v-th view under metric M(v) defined by
∥∥x(v)

∥∥2

M(v) := x(v)T

M(v)x(v). This is the objective function of CCA-SOM with the ensemble approach. If
V = 1, then Equation (2) becomes the objective function of ML-SOM with the ensemble
approach.

For CCA-SOM with the co-training approach, we propose the following objective func-
tions by modifying Equation (2). To estimate {zn} and

{
f (v)

}
, the objective function is

given by

LZ,f

(
Z,

{
f (v)

} ∣∣ {M(v)
})

=
V∑

v=1

N∑
n=1

∫
Z

h(ζ, zn)

[
−1

2

∥∥x(v)
n − f (v)(ζ)

∥∥2

M(v)

]
dζ (3)

under that the metrics
{
M(v)

}
are given. Thus, there is no difference from the ensemble

approach. By contrast, the objective function for metric learning is given by

LM

({
M(v)

} ∣∣Z(−v), f (v)
)

=
V∑

v=1

N∑
n=1

∫
Z

h
(
ζ, z(−v)

n

) [
−1

2

∥∥x(v)
n − f (v)(ζ)

∥∥2

M(v) +
1

2
ln

∣∣detM(v)
∣∣] dζ, (4)

where z
(−v)
n is the latent variable estimated without using the v-th view. Thus, z

(−v)
n

is given by minimizing Equation (3) without using the v-th view. Unlike the ensemble
approach, the objective functions of the co-training approach cannot be integrated into a
single function. This objective function is also applied to ML-SOM with the co-training
approach by introducing the pseudo multi-view.

3.3. Algorithm for CCA-SOM with the ensemble approach. In the ensemble ap-
proach, the objective function (2) is optimized alternately for Z,

{
f (v)

}
, and

{
M(v)

}
.

Like the ordinary SOM, {zn} and
{
f (v)

}
are updated as follows:

zn = arg min
z

∑
v

∥∥x(v)
n − f (v)(z)

∥∥2

M(v) (5)

f (v)(z) =
1

H(z)

N∑
n=1

h(z, zn)x(v)
n , (6)

where H(z) =
∑

n h(z, zn). In (5), we used the following approximation:

arg min
z

∑
v

∫
Z

h(ζ, z)
∥∥x(v)

n − f (v)(ζ)
∥∥2

M(v) dζ ∼ arg min
z

∑
v

∥∥x(v)
n − f (v)(z)

∥∥2

M(v) , (7)

which is widely used in SOM. In the same manner, precision matrix M(v) is updated
using the inverse of the covariance matrix:

S(v) =
1

N

N∑
n=1

(
x(v)

n − f (v)(zn)
) (

x(v)
n − f (v)(zn)

)T
(8)

M(v)
new := (1 − ε)M(v)

old + εS(v)−1
. (9)
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Equation (7) is applied again. These estimations are repeated, with the neighborhood
size reduced gradually until the calculation converges. The algorithm is summarized in
Algorithm 1.

In an actual calculation, latent space Z is discretized to regular grid nodes, like the
ordinary SOM, and the integral is evaluated numerically for the discrete nodes.

Algorithm 1 Algorithm of CCA-SOM (ensemble approach)

For all n, initialize {zn} randomly.
For all v, initialize

{
f (v)

}
using Equation (6), and initialize

{
M(v)

}
using identical

matrices ID(v) .
repeat

For all n, update {zn} using Equation (5).
For all v, update

{
f (v)

}
using Equation (6), then update

{
M(v)

}
using Equations (8)

and (9).
until the calculation converges

3.4. Algorithm for CCA-SOM with the co-training approach. {zn} and
{
f (v)

}
are updated using Equations (5) and (6), respectively, as in the case of the ensemble
approach. By contrast, matrices

{
M(v)

}
are estimated using the co-training approach.

Thus, to estimate the v-th view metric, the latent variables are estimated without using
the data of the v-th view using

z(−v)
n = arg min

z

∑
v′ ̸=v

∥∥∥x(v′)
n − f (v′)(z)

∥∥∥2

M(v′)
. (10)

Note that z
(−v)
n is regarded as the desired zn for the metric learning of the v-th view.

Thus, M(v) is updated as

S(v) =
1

N

N∑
n=1

(
x(v)

n − f (v)
(
z(−v)

n

)) (
x(v)

n − f (v)
(
z(−v)

n

))T
(11)

M(v)
new := (1 − ε)M(v)

old + εS(v)−1
. (12)

The algorithm for the co-training approach is shown in Algorithm 2.

Algorithm 2 Algorithm of CCA-SOM (co-training approach)

For all n, initialize {zn} randomly.
For all v, initialize

{
f (v)

}
using Equation (6), and initialize

{
M(v)

}
using identical

matrices ID(v) .
repeat

For all n, update {zn} using Equation (5).
For all v, update

{
f (v)

}
using Equation (6).

for all v do
For all n, obtain

{
z

(−v)
n

}
using Equation (10).

Calculate
{
S(v)

}
using Equation (11).

end for
For all v, update

{
M(v)

}
using Equation (12).

until the calculation converges.
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3.5. Algorithms for ML-SOM. The objective function of ML-SOM for the single-view
case is given by Equation (2), where V = 1. Therefore, the algorithm of ML-SOM with
the ensemble approach becomes Algorithm 1, where V = 1.

By contrast, the pseudo multi-view is introduced to ML-SOM of the co-training ap-
proach. Suppose that V is the set of all components. At every iteration loop, a subset
of data components U ⊂ V is generated randomly as a pseudo view. Then, the latent
variable determined by components U,

z(U)
n = arg min

z
∥xn − f(z)∥2

M(U) , (13)

is used for metric estimation, where M(U) is the submatrix of M with respect to U and is
updated using

S =
1

N

N∑
n=1

(
x(v)

n − f
(
z(U)

n

)) (
x(v)

n − f
(
z(U)

n

))T
(14)

Mnew := (1 − ε)Mold + εS−1. (15)

Note that mapping f is updated in the same manner as the ensemble approach Equa-
tions (5) and (6). The algorithm of ML-SOM of the co-training approach is summarized
in Algorithm 3.

Algorithm 3 Algorithm of ML-SOM (co-training approach)

For all n, initialize {zn} randomly.
Initialize f using Equation (6), and initialize M using identical matrices ID.
repeat

For all n, update {zn} using Equation (5).
Update f using Equation (6).
Choose m components randomly and obtain pseudo view U.

For all n, obtain
{
z

(U)
n

}
using Equation (13).

Update M using Equations (14) and (15).
until the calculation converges.

4. Simulation Results.

4.1. Results of CCA-SOM. The abilities of the proposed methods were examined using
an artificial dataset. Two-view data were synthesized using a uniform distribution on a
pair of one-dimensional manifolds in three-dimensional space, and non-white Gaussian
noise was added to each sample (Figure 1, ground truth). We examined three algorithms:
CCA-SOM with the co-training approach, CCA-SOM with the ensemble approach, and
the standard SOM. The precisions of latent variable estimation were assessed using the
mutual information between the ground truth and estimated result.

The results are shown in Table 1 and Figure 1. The results show that CCA-SOM with
the co-training approach demonstrated the best performance among the three methods.
As shown in Figure 1, CCA-SOM with the co-training approach also estimated the man-
ifold shape well compared with the other two methods. For the standard-SOM, it often
failed to estimate the manifold shapes. It should also be noted that the metric matrix
was often degenerated in CCA-SOM with the ensemble approach.
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Ground truth CCA-SOM (co-training) CCA-SOM (ensemble) Standard SOM

Figure 1. (color online) Results on the two-view dataset. Black/red curves
are the estimated manifold shapes and ground truth, respectively. The
colors of the sample points represent the true latent variables, and the
ellipses represent the equidistance curves of Mahalanobis metrics.

Table 1. Precisions of latent variable estimation assessed using the mutual information

Algorithm CCA-SOM (multi-view) ML-SOM (single-view)
Co-training 1.26 ± 0.02 1.386 ± 0.017

Ensemble 0.98 ± 0.02 1.282 ± 0.011
Standard SOM 0.95 ± 0.02 1.292 ± 0.008

Ground truth ML-SOM (co-training) ML-SOM (ensemble) Standard SOM

Figure 2. (color online) Representative results on a single-view dataset

4.2. Results of ML-SOM. The proposed methods were examined on an artificial data-
set. The ML-SOM of the co-training approach demonstrated the best performance for
latent variable estimation among the three methods (Table 1). It is also noted that the
ensemble approach was worse than the standard SOM.

Figure 2 shows an example of manifold estimation. Because of non-Gaussian noise,
the results of the standard SOM were biased, whereas such bias was compensated for in
the ML-SOM of the co-training approach. In the ensemble approach, the metric matrix
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tended to be degenerated, and as a result, the estimation accuracy of the latent variables
became worse than that for the co-training approach. These results suggest that the
co-training approach is effective for metric learning in both multi-view and single-view
cases.

5. Discussion. In unsupervised learning, it is known that there is no criterion for deter-
mining which features are better than others. This problem is known as “the ugly duckling
theorem” [26]. The theorem also asserts that we cannot determine the best metric un-
der unsupervised settings without providing additional assumptions. In the co-training
approach, ML-SOM learns the metric so that the result becomes robust for missing com-
ponents. Thus, if a metric is the most robust for any missing component, then the metric
is regarded as the consensus of all components. This is the assumption that we added
into the method. Because this approach resembles the dropout method in deep learning
[10, 22], we believe that further investigation will demonstrate the underlying principle.

Interestingly, although the ensemble approach appears to be theoretically plausible, its
performance was worse than that of the co-training approach. In the ensemble approach,
once a weight of a component became excessively large by coincidence, the component
became more dominant in latent variable estimation. As the result, the weight of the
component grew further and defeated other components. This is the reason why the metric
matrix tended to be degenerated in the ensemble approach. Figure 3 shows a typical
example of this phenomenon. In the case of the ensemble approach (dashed lines), this
undesired phenomenon occurred around the 200 epoch, whereas such a phenomenon never
occurred in the co-training approach (solid lines). This fact implies that the Bayesian
approach may not always be optimal. It is also worth stressing that the metric tended to be
non-singular in the co-training approach because it was necessary to use any components
to be robust against missing components. Therefore, both approaches worked in the
opposite direction in metric learning.

Figure 3. Representative results for the metric learning process

6. Conclusion. We demonstrated that the co-training approach provides more robust
results in metric learning using a simulation. Theoretical analysis on the co-training
approach, such as proof of convergence, is a future topic of research. In this study, the
proposed method estimated the global metric. It should be further extended to local
metric estimation, which is also a future topic of research.
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