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ABSTRACT. In this paper we propose an optimal type-2 fuzzy adaptive controller for a
class of uncertain nonlinear system with unknown dynamic. As it is known, one of the
most famous control strategies that deals with uncertainties is Fuzzy Control. In the
last decade, scientists have shown that standard fuzzy logic cannot handle uncertainties
because the measurements that activate a standard FLS (Fuzzy Logic System) may be
noisy and therefore uncertain. Therefore, the method is based on type-2 FLS to approxi-
mate unknown non-linear functions. Thus we introduce a type-2 FLS, which can handle
rule uncertainties. The implementation of this type-2 FLS involves operations of fuzzi-
fication, inference, and output processing. The design of the on-line adaptive scheme
of the proposed controller is based on linear matriz inequalities (LMI) technique. We
exploit the linear structure of a Takagi-Sugeno fuzzy system with constant conclusion to
design an indirect adaptive fuzzy controller. However, the control law cannot ensure the
conditions of Lyapunov stability. To overcome this problem, attenuate the influence of
external disturbances, and remove fuzzy approzimation error, we add a component called
the supervision control that will force the time derivative of the function of Lyapunov to
be negative. Simulation results are given to illustrate the effectiveness of the proposed
approach.

Keywords: Fuzzy set type-2, LMI, Lyapunov approach, Nonlinear system, Takagi-
Sugeno fuzzy model

1. Introduction. The control of nonlinear systems has been an important topic of re-
search [1,2]. Traditionally, control system design has been tackled using mathematical
models derived from physical laws. In fact the structure and most of the parameters
of the system are unknown. To overcome this problem in the design of control systems
several techniques have emerged in the recent years especially techniques based on the
intelligent technology such as neural networks, fuzzy logic, genetic algorithms, and evolu-
tionary computation [3-6]. In particular, FLSs have been successfully applied to control
complex or ill-defined processes whose mathematical models are difficult to obtain [7,8].

In the past few years, fuzzy control of nonlinear systems has been implemented suc-
cessfully in many applications. In most of these applications, the so called Takagi-Sugeno
type fuzzy model is used to represent a nonlinear system [6]. Then based on this model,
a fuzzy controller was designed. Fuzzy logic control has found promising applications for
a wide range of industrial systems specifically applicable to plants that are mathemati-
cally poorly modeled [9]. Based on the universal approximation capability, many effective
adaptive fuzzy control schemes have been developed to incorporate with information and
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knowledge of human experts in a systematic way and can also guarantee stability and
performance criteria [7,8,10,26].

However, FLSs have a major drawback which is expressed in the fact that the fuzzy
rules must be previously tuned by time-consuming trial-and-error procedures. This is
due to the lack of adequate analysis and design techniques. To overcome this problem,
some researches have been focusing on the Lyapunov synthesis approach to construct
stable adaptive fuzzy controllers. The basic idea of most of these works is that with the
universal approximation ability of FLSs, the system uncertainties can be represented by
linearly parameterized uncertainties so the standard parametric adaptive techniques can
be utilized [11,12].

Feedback linearization based on adaptive control is suitable for the control of nonlinear
systems with accurate nominal models or linearly parametrical dynamical models. How-
ever, due to modelling errors, these controls may not be very effective without proper
compensation to overcome the modelling error effects [13,14,26].

The design procedure aims at rendering the fuzzy controllers stable. More significantly,
the stability analysis and control design problems are reduced to LMI problem. The so-
called linear matrix inequality (LMI) approach has been widely used to solve problems
in linear robust control, gain-scheduling and in multi-objective control [15]. Since the
work [16] that showed a solution to the nonlinear problems using LMIs, researchers have
proposed different solutions to nonlinear robust H,, control problems, e.g., [17].

Numerically, the LMI problems can be solved very efficiently by means of some of the
most powerful tools available to date in the literature of mathematical programming.
Therefore, recasting the stability analysis and control design problems as LMI problems
is equivalent to finding solutions to original problems [18,19].

Many researches have shown that type-1 FLSs have difficulties in modelling and min-
imizing the effect of uncertainties [4,20,24,25]. One reason is that a type-1 fuzzy set is
certain in the sense that the membership grade for a particular input is a crisp value.
Recently, type-2 fuzzy sets, characterized by membership functions that are themselves
fuzzy, have been attracting interest [4,20-22]. For such sets, each input has a unity of
secondary membership grade defined by two type-1 membership functions, upper mem-
bership function and lower membership function. The concept of a type-2 fuzzy set was
introduced by Zadeh as an extension of the concept of an ordinary fuzzy set called a
type-1 fuzzy set [23].

An FLS using at least one type-2 fuzzy set is called a type-2 FLS. The wide range of
applications of type-2 FLSs has shown that it provides good solutions, especially in the
presence of uncertainties [4]. Similar to the conventional adaptive control, adaptive fuzzy
control can be categorized into direct, indirect and composite schemes according to the
type of fuzzy rules [12,26].

In this paper, we present an optimal type-2 adaptive fuzzy control for a class of non-
linear systems with unknown dynamic. The basic idea is that first the type-2 FLS is
utilized to approximate the unknown nonlinear function, and then the fuzzy parameters
are adjusted on-line by the adaptive laws with stability and convergence analysis using
the Lyapunov approach in order to achieve the specified tracking performance. The aux-
iliary compensation control is designed to attenuate the influence of external disturbances
and the fuzzy approximation error. The design of this signal depends on the well-known
upper bounds of both the approximation error and the external disturbances, which is a
restrictive assumption due to the fact that these bonds are generally unknown.

The structure of a type-2 Fuzzy Logic Controller (FLC) is given in the figure below. It
is very similar to the structure of a type-1 FLS. For a type-1 FLS, the output processing
block contains only the defuzzifier. The fuzzifier maps the crisp input into a fuzzy set.
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This fuzzy set can, in general, be a type-2 set. In the type-1 case, we generally have “IF-
THEN” rules. The distinction between type-1 and type-2 is associated with the nature
of the membership functions, which is not important while forming rules. Hence, the
structure of the rules remains exactly the same in the type-2 case. The unique difference
is that now some or all of the sets involved are of type-2. It is not necessary that all the
antecedents and the consequent are type-2 fuzzy sets. As long as one antecedent or the
consequent set is type-2, we will have a type-2 FLS.

N
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Rules reduced
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FIGURE 1. Type-2 fuzzy logic system

This paper is organized as follows. Section 2 describes the type-2 FLSs. In Section 3,
we define the problem and we propose the optimal adaptive type-2 fuzzy control. Section
4 presents numerical results which validate the proposed approach. Concluding remarks
are given in Section 5.

2. Type-2 Fuzzy Logic Systems. The basic configuration of an FLS consists of a
fuzzifier, a fuzzy rule base, a fuzzy inference engine and a defuzzifier. The structure of a
type-2 FLS is similar to type-1 counterpart. The major difference is that at least one of
the fuzzy sets in the rule base is type-2. A type-2 fuzzy set is characterized by membership
functions that are themselves fuzzy. The key concept is “footprint of uncertainty”, which
models the uncertainties in the shape and position of the type-1 fuzzy set. In a type-1
FLS, the inference engine combines rules and gives a mapping from inputting type-1 fuzzy
sets to output type-1 fuzzy sets. In the type-2 case, the inference process is very similar.
The inference engine combines rules and gives a mapping from input type-2 fuzzy sets to
output type-2 fuzzy sets. To do this one needs to find unions and intersections of type-2
sets, as well as compositions of type-2 relations.

Figure 2 illustrates an example of a type-2 fuzzy membership functions with footprint
of uncertainty [21,22]. Uncertainty in the primary membership grades of a type-2 mem-
bership function consists of a region that we call the footprint of uncertainty of a type-2
MF'. The footprint of uncertainty represents the union of all primary memberships.

The output of inference engine for a type-2 FLS is type-2 sets. We focus on “output
processing” which consists of type reduction and defuzzification. Type-reduction methods
are extended versions of type-1 defuzzification methods. Type reduction captures more
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FIGURE 2. Type-2 fuzzy sets

information about rule uncertainties than does the defuzzified value (a crisp number), but
it is computationally intensive, except for interval type-2 fuzzy sets for which we provide a
simple type-reduction computation procedure. Hence a type-reducer is needed to convert
them into type-1 sets before defuzzification can be carried out.

2.1. Inference in type-2 fuzzy logic systems. The inference engine uses the fuzzy
[F-THEN rules to perform a mapping from an input vector z = (z1, Zo, ..., Z,)’ to an
output scalar y. We introduce a class of FLSs, type-2 FLSs, in which the antecedent or
consequent membership functions are type-2 fuzzy sets.

These rules represent a type-2 fuzzy relation between the input space and the output
space of the FLS. The fuzzy rule base consists of a collection of fuzzy IF-THEN rules in
the following form:

R': Ifzyis F and xy is FY ... and z, is F! Then y is G (1)

where ]5; are the antecedent sets (i =1,2,...,m, j = 1,2,...,n), G* are the consequent
sets and m is the number of rules. We denote the membership function of this type-2
relation as:

FRix i x Fix ... x i -G (‘Tl’ L2 X35 -+ Tns y)

where F/ x F§ x Fi x ... x F! denotes the Cartesian product of F?, F¥, Fi... F!.
The first step in the extended sup-star operation is to obtain the firing set F*(z) by
performing the input and antecedent operations.

Fi(z) = H::I s (5) (2)

A general type-2 FLS is very complicated because of type reduction. Things are more
simplified a lot when the secondary membership functions are interval sets in which case
we call the type-2 FLS an interval type-2 FLS. As only interval type-2 fuzzy sets are
used and the met operation is implemented by the product ¢-norm, the firing set is the
following type-1 interval set:

Fi(e) = [£'@).7 (@) ()

where: f1(x) = iz, (r1) gy (r2) e 1z () and F'(2) = gy (1) iz (o) -5y ().
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The term i (x]) and T (z;) are the lower and upper membership grades of 1 (z),

respectively.
Next, the firing set f%(x) is combined with the consequent fuzzy set of the i*" rule using
the product z-norm to derive the fired output consequent sets.

2.2. Type-reduction for interval type-2 fuzzy logic systems and defuzzification.
Since the output of the inference engine is a type-2 fuzzy set, it must be type-reduced
before the defuzzifier can be used to generate a crisp output. This is the main struc-
tural difference between type-1 and type-2 FLC. The most commonly used type-reduction
method is the center-of-sets type-reducer. The center-of-sets type reducer replaces each
consequent set by its centroid (which itself is a type-1 set if the consequent set is type-2)
and finds a weighted average of these centroids, where the weight associated with the "
centroid is the degree of firing corresponding to the i*" rule, namely H?:l P (z;). The

expression of the type-reduced set is given by [12]:
cos Yl Ym Fl Fm)

/ / /mWw (1) Zz";ifjf/ (4)

where 7 and * denote the chosen t-norm, y* € C; = Cg: is the centroid of the i*" conse-
quent set, and f* € F'(z) = []}_; ppi(2;) is the degree of firing associated with the "
consequent set for i =1,2,...,m. ’

For an interval type-2 FLS, each Y and F* is an interval type-1 set, then puy:(y*) =
pri(ff) = 1. Equation (4) can be rewritten as:

YCOS(YI,...,Y"L,FI,...,F’”):/yl.../ym.../fl.../fml/%:[yl,yr] (5)

The fuzzifier maps a crisp point x = (z1,%9,...,7,)" into a fuzzy set. The defuzzifier
maps fuzzy set in R to crisp points in R.

By using the singleton fuzzification, product inference, and centre-average defuzzifica-
tion, the output value of fuzzy system is:

y(z) = 0"€(z, 1) (6)
where § = (0',60%,...,0™)7" = (g, 7%,...,y™)7 is the parameter vector, and &(z,t) =
(€',2,...,6™T is the vector of fuzzy basis functions.

3. Problem Formulation and Design Optimal Type-2 Fuzzy Adaptive Con-
troller. Consider a general class of SISO n'® order nonlinear systems. The dynamics
equation can be described as:

i‘lzl‘Q
i‘QZIg

b= f(z,t) + bu+ d(t)
Y=

or equivalently
- 7

where z = (z1,29,...,7,)" = (2,2,..., 50T € R" is the state vector of the system
which is assumed to be available for measurement. u € R and y € R are respectively

{ ™ = f(z,t) + bu +d(t)
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the input and the output of the system. f is a nonlinear system function representing
the dynamic system behaviour. b is a positive constant and d(t) is the unknown external
disturbance. To satisfy the controllability of system (7), the input gain b # 0 is necessary.

In many real application, f(z,t) may not be exactly known, which can be split into
two parts as:

fla,t) = flz,t) + Af(z, 1) (8)

where f(z,t) denotes the nominal part and Af(z,t) represents its uncertain part.
Without loss of generality, we assume the following assumptions.

Assumption 3.1. z belongs to a compact set U, = {x € R" : |z| < M.}, where M, is a
positive constant.

Assumption 3.2. Af(z,t) is bounded as follows: |Af(z,t)| < F(z,t),Yr € U, C R".
Assumption 3.3. |d(t)| < d,,,, where d,, is upper bound.

A type-1 FLCs are unable to handle rule uncertainties directly, because they use type-1
fuzzy sets that are certain. On the other hand, type-2 FLCs are very useful in circum-
stances where it is difficult to determine an exact measurement of uncertainties. It is
known that type-2 fuzzy set let us model and minimize the effects of uncertainties in rule
base FLC. Unfortunately, type-2 fuzzy sets are more difficult to use and understand than
type-1 fuzzy sets; hence, their use is not widespread yet.

Knowing the limits of the standard fuzzy logic in the treatment of uncertainties, the
last decade started a new direction in FLS. Scientists “led” by Mendel “dusted oft” the
ideas of Zadeh that he had on enhanced fuzzy sets (type-2 fuzzy sets). In fuzzy type-2
sets the uncertainty is represented as an extra dimension and advantages can be gained.

To consider the treatment of uncertainty in the dynamic of a system, we use type-2
FLS (6) to approximate the unknown nonlinear function A f(z,t):

Af(z/0)) = 07¢s(z, ) (9)

where 0, is free to be tuned adaptively and &; (z,t) is a regressive vector.
Define the optimal parameters of type-2 fuzzy system:

= arg min Lsup |Af(z,t) - fof(g, t)| (10)

0;€Q5 | get,

It is assumed that the optimal vector §} that minimizes the modelling error lies in a
convex region:

Qp = {0, e R/ |0,| < My} (11)
where the radii M} is a positive constant.

Since Af(g/Qf) is interval type-2 fuzzy system, then the type-reduced sets will be given
respectively by:

WWWFJm/////i;ﬁﬂ w

6‘1 o g1

[ is the degree of firing associated with the 7' rule of the FLS Af(g/Qf).
Equation (12) may be computed using the Karnik-Mendel iterative method [12]. Tt has
been proven that this iterative procedure can converge in at most N iterations.
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Once fl and fr are obtained, they can be used to calculate the crisp output. Since the
type-reduced set is an interval type-1 set, the defuzzified output is:

r f + fr
Af(z/0y) = = (13)
C Sae S
fl - Z7m B fr = Z7m . (14)
; fi ; f}
where: Ep(z) = (£, &7, -, €T and &g (2) = (§f,,EFpr -+, ER)T are the vectors of the
fuzzy basis functions with:
i fi
En =
£
zfli (15)

Gr =5

> [
=1

f{ and f! denote the firing values used to compute the left point f; and right point o,
respectively.

0;= (0}1@, 912(, ..., 07) is the adjustable parameter vector of type-2 fuzzy systems Af(z/8,).
Then:

fi= Q}fﬂ () 5)
fr - Qfgfr(ﬁ)
Therefore:
T T
Af(z,ﬁf) _ 0 & (x) —;fofr(ﬁ)
T Fﬂ(i) +§fr(£)] (17)
=07 5

=07¢(z)

Based on the universal approximation theorem [11], the above FLS is capable of uniformly
approximating any well-defined nonlinear function over a compact set U, to any degree
of accuracy.

The control problem is to obtain the state z in order to track a desired state x, in the
presence of model uncertainties and external disturbance with the tracking error:

e=x—x;=(e6,...,em N (18)

If the function f(z,t) is completely known and d(¢) = 0, we can solve the control problem
stated above by the so-called feedback linearization method. In this method, the function
f(z,t) is used to construct the following feedback control law:

n—1
u = % (—f(g, t)+ 2" — Zcz-e(i)> (19)

with defining C' = (co,c1,...,001,1)" provided that the polynomial: h(\) = A" +
Cn1 A"+ e is a polynomial Hurwitiz, i.e., all the roots are in the open left half-plane.
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However, since f(z,t) and disturbance are actually unknown in practical systems, we
cannot use them for constructing the control law (19). Therefore, to solve these problems,
we replace them by their estimates with the type-2 FLS f(z,t) + Af(g/Qf) to construct
a self-tuning controller:

uc:%<—f( 1)~ Af(e/8,) + 2 ch ) (20)

This control law synthesized by the type-2 fuzzy logic allows to take into account the
uncertainties of dynamic we have in the system dynamics as opposed to standard fuzzy
logic which cannot handle uncertainties.

In order to obtain good results in the tracking performance, we can use the auxiliary
compensation control. In this article, we combined the contributions made by the fuzzy
logical type-2 with the importance of LMI technique for analysis and synthesis of control
systems. One of the main advantages of LMI techniques in control is that they allow us
to save, in a numerical way, many interesting problems that have always been considered
hard to tackle and that lack an analytical solution. It is, hence, a relevant engineering
objective to assess whether these techniques, which are very appealing from a theoretical
point of view, are effectively beneficial in designing controllers for real systems. The
synthesis of this control relies on LMI and Lyapunov approach. We follow the Lyapunov
synthesis method by constructing a Lyapunov function candidate V' and then determining
the conditions required to, indeed, make it a Lyapunov function of the closed-loop system.

The auxiliary control part is given as:

T
u = "ME PP [p ) 4 |af(a/s)
with P and B being two matrices defined below.

The proposed fuzzy control scheme can guarantee that:

i) All the variables of the closed-loop system are bounded.

ii) The tracking performance is achieved.

The function sat(e” PB) may be written as:

. (e"PB)if |e"PB| > ¢
saile PB) = |era| if ‘eTPB‘ <e

U= Ue + Uy (23)

+ dm] (21)

(22)

with adaptive law giving:
0, = 6e"PBEs(x,t) if (|0,] < M)
or (‘Qf‘ = My and " PBO;&g(z,t) > 0) (24)
Proj(6e" PBE;(z,t)) otherw1se

The projection operator is given by:
T

Proj (5§TPB§f(g, t)) = 5§TPB§f(g, t) — e’ PB HH H2
=f

where ¢ is fixed adaptive gain.

Theorem 3.1. Consider the controlled system (7) with type-2 FLS to approzimate the
unknown nonlinear function (6). If Assumptions 3.1-3.3 are true and if there is a matriz
P > 0 satisfying the LMI: ATP4+PA < 0, then the closed-loop control system with optimal
control signal defined by (23) and adaptive law defined by (24) and (25) are globally stable.
Thus the proposed optimal type-2 fuzzy control scheme can guarantee that:
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i) All the variable of the closed-loop system are bounded.
ii) The tracking performance is achieved.

Proof: Consider the system (7)
™ = f(z,t) + bu(t) +d(t)

Substituting (20) and (23) into (7), the output error dynamics can be expressed as:

—y™ 4 Z c;e® f(x,Q) + bu, + d(t) (26)

Then
n—1

e = =" cie® 4 f(a,t) — f (z,0) + bu, + d(t) (27)

1=0

After some manipulations, the error dynamic can be represented by:
¢ = Ae+ B(Af(z,t) — Af(z/0,) + bu, + d(t)) (28)

with B € R", defined by:

e}

B=|: (29)
0
1

We use the Lyapunov approach in which u, and the adaptive law are chosen so as to
make the Lyapunov function decrease along the trajectories of the adaptive system. The
controller design is based on the type-2 FLS and on the LMI optimization techniques.

If there exists a matrix P > 0, satisfying the following LMI:

ATP4+PA <O (30)

where A, a stable matrix, is given by:

0 1 0 0 0 0
0 0 1 0 0 0
A= S (31)
0 0 0 0 0 1
—C —C1 —C —Cp—1

we consider the following Lyapunov function candidate:

]‘T ]‘ T
= —¢ P — ¢ P 2
V=€ Pe+ o (32)

where ® = 6% — 6, and § is a positive constant specified by the designer.
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The time derivative of V' along the system trajectory is:

V= %QT(ATP + PA)e +€¢'PB [Af(g, t)— Af(z/03) + Af(z/9})

~Af(z/0;) + bu, + d(t)] + %@T@

V= %QT(ATP +PA)e+ ¢ PB [Af (z.t) = Af(z/8})

+ &7¢(z) + bu, + d(t)] + %@qu

V= %gT(ATP + PA)e+e'PB [Af(g, t) — Af(z/0%) + bu, + d(t)]

+ %@T(é + de" PB¢())

By consideration of the update law (24) and satisfying assumptions, V can be written as:

. 1 o
V < 5 (ATP+ PA)e+|¢"PB| [IF| + |Af(z,0)

+ dm] + " PBbu,

with P verifying the LMI form: ATP + PA < 0.
Then

V< [e"PB|[|F] +|af(.0)
If [¢"PB| > ¢, sat(e" PB) = sgn(e" PB).
Substituting u,, defined in (21), into (33), then we have V' < 0.
If [e"PB| < ¢, sat(e" PB) = (‘ITPB), then u, = —%@ [|F| + ‘Af(g,ﬂ*)
And

+ dmax] + ¢ PBbu, (33)

+ dmax] .

] -2

V< |TPB| [|F| + ‘Af(z,ﬂ*)

Pl +|af@,0)

+ dmax] (34)
Therefore: V < 0.

4. Simulations Results. A large number of fuzzy control applications can be considered
in the industrial processes and more specifically in the fields of automobiles and Renewable
Energies. In this section, to show the performance of the presented controller we consider a
classical test for uncertain nonlinear system. We test the type-2 adaptive fuzzy controller
on the tracking control of a Duffing forced oscillation system described by the following
equation:

l.'l = T9
Ty = —0.1xy — 23 + bu(t) + d(t)
y=T

The objective of control is to maintain the system tracking the desired angle trajectory:
yr(t) = gsin(().()lt)

The coefficients of the Hurwitz polynomial are set as: ¢ = 1 and ¢; = 7.
The initial values of z;(0) = 1 and z,(0) = 1.
Let the adaptive gain v = 0.5, My =1, and € = 0.1.
The external disturbance is represented by: d(t) = 12 * cos(t).
The solution of the LMI (30), using the Matlab Toolbox, is: P = [ 12580 0.1769 }
’ ’ 0.1769 0.1068

The upper function F is |23|.
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The membership functions for system state x; are represented in Figure 3. There are
3 rules to approximate the system function: Af(z,t) = —z3.

Figure 4 demonstrates the tracking performance in presence of disturbances. The cor-
responding fuzzy control signal is given in Figure 5. The tracking error is illustrated in

Figure 6.

5. Conclusion. In this paper, we presented an optimal adaptive type-2 fuzzy control
for a class of nonlinear systems based on the Lyapunov synthesis approach and LMI. We
introduced the type-2 FLS to approximate the unknown nonlinear term.

The main advantage of the proposed controller, interval type-2 FLC, is that it does not
need any knowledge about the nonlinear term.
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FIGURE 4. The state x; and its desired value x4
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FIGURE 6. The tracking error

The auxiliary part of control is implemented to improve the system performance by
suppressing the influence of external disturbance and removing the fuzzy approximation
error. The synthesis of this signal relies on LMI and Lyapunov approach.

The simulation results have shown the effectiveness of the optimal adaptive type-2
fuzzy controller for a class of nonlinear systems in achieving the desired performance in
the presence of external disturbances and fuzzy approximation error.
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