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ABSTRACT. Skeleton-based human action recognition has become a hot research topic
i computer vision recently. However, the skeleton action recognition method based on
graph convolution has the problems that spatiotemporal separated graph convolution can-
not well establish multi-order cross-spatiotemporal connections of human joint points. In
this paper, we propose an attentional multi-scale unified spatiotemporal graph convolu-
tional network. The unified spatiotemporal graph convolution directly constructs the cross-
spatiotemporal human skeleton connection, realizing barrier-free spatiotemporal commu-
nication. The multi-scale graph convolution ensures the effectiveness of long-distance
features at different step sizes. Moreover, an external attention mechanism is added to
extract potential conmections between different samples. In addition, according to the
physical connection between the skeleton joints, a siz-stream architecture is designed to
further strengthen the expressiveness of the model. Experiment results on two skeleton
datasets, NTU RGB+D 60 and NTU RGB+D 120, show that this model reaches an ad-
vanced level compared to other methods.
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1. Introduction. Human action recognition classifies human behavior by analyzing hu-
man body posture and movement trajectory. At present, human action recognition tech-
nology has been widely used in the fields of video surveillance and virtual reality [1]
and has important research value and practical significance. Human 3D skeleton data
are relatively insensitive to background changes and can provide more accurate human
body posture information in 3D space. Compared with traditional RGB video and depth
images, skeleton data have more advantages and broader application prospects.

Most of the previous studies [2-10] on human skeleton action recognition based on the
graph convolution method divide the skeleton information into two dimensions of space
and time to perform graph convolution operations separately. However, this approach
hinders the direct cross-spatiotemporal connections of human joints. At the same time,
how to establish the connection between the nodes and their neighboring nodes of different
steps is also a problem worth considering. Meanwhile, the current method [3-5] prefers to
explore deeper connections between skeleton joints and ignores correlations among action
samples. In addition, most of the networks [3,4] focus only on joint information and bone
information, but physical information such as the transformation angles of the human
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skeleton in the spatial domain and the motion trajectories in the temporal domain also
contain rich features.

To address the above problem, we propose an attentional multi-scale unified spatio-
temporal graph convolutional network (AMU-GCN). Firstly, inspired by Liu et al. [11], a
multi-scale unified spatiotemporal graph convolutional network is proposed to solve the
problem that spatiotemporal separated graph convolution cannot well establish multi-
order cross-spatiotemporal connections of human joints. The introduction of an external
attention mechanism [12] combined with multi-scale unified spatiotemporal graph convo-
lution can not only effectively extract detailed information about the human skeleton in
the action sequence, but also take account of the potential relationship between various
actions. The 3D joint features are expanded into five high-level features, and each type
of feature is input into the network to form a six-stream network to improve the perfor-
mance of the network. The models are evaluated on two datasets, NTU RGB+D 60 and
NTU RGB+D 120. Compared with previous mainstream methods, the accuracy of the
AMU-GCN achieves more advanced results on both skeleton datasets.

The main contributions of this paper are as follows. 1) The multi-scale unified spa-
tiotemporal graph convolution treats the skeleton sequence as a spatiotemporally cross-
able whole. Edge connections in the spatiotemporal skeleton are constructed by a sliding
time window mechanism, to realize the cross-spatiotemporal graph convolution. Dividing
the adjacency matrix into adjacency sub-matrices at each scale according to the shortest
spatial distance ensures the validity of long-distance features. 2) The external attention
mechanism extracts potential connections between different samples, balancing global
and local features of the skeleton sequence. 3) A multi-input branch architecture is pro-
posed to expand the original 3D joint features into five high-level features. The fusion
of multi-stream information can help the network effectively integrate information data
with different high-quality features and provide more accurate output.

The organization of this study is as follows. Section 2 reviews previous deep learning-
based methods. Section 3 describes our proposed model in detail. Section 4 provides the
experiment results and analysis. Section 5 summarizes the proposed model and indicates
the future research direction.

2. Related Work. Deep learning methods have achieved excellent results in human ac-
tion recognition tasks and can be classified into three categories: recurrent neural network
(RNNs) based, convolutional neural networks (CNNs) based, and graph convolutional
neural networks (GCNs) based.

The RNNs-based approach feeds continuous skeleton data into the network as time
series, focusing more on the extraction of temporal relationships. Liu et al. [13] combine
the trust gate mechanism with long short-term memory (LSTM) and use multichannel
fusion techniques to integrate features from each perspective of the action sequence. Liu
et al. [14] use global context and attention mechanisms to capture key features of skeleton
sequences. However, these methods focus more on temporal connections and fail to fully
consider the extraction of spatial connections.

The CNNs-based approach processes the human skeleton as a spatiotemporal feature
map to extract information. Kim and Reiter [15] stack multiple temporal convolutional
layers to extract feature information in the skeleton. Liu et al. [16] map 3D skeleton data
to 2D space, effectively eliminating viewing angle differences. However, these methods
treat the skeleton information as a pseudo-image and ignore the 3D connections among
the skeleton joints.

The GCNs-based approach [1-11,17-19] describes the connection status between nodes
by constructing the adjacency matrix and updates the feature information of nodes by
aggregation operations. Yan et al. [2] express the human skeleton sequence as a spatial
graph and a temporal graph, respectively, and use the graph convolutional network to
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model the human skeleton for the first time, achieving more advanced performance. Li et
al. [3] represent skeleton sequences as action structure graphs, using graph convolutions
to capture spatiotemporal features. At the same time, an attention mechanism is also
introduced to weigh the nodes and connected edges. Shi et al. [4] divide the input fea-
tures into two categories, joint features, and bone features, to capture the spatiotemporal
relationship of the human body separately. Shi et al. [5] represent the human topological
graph as a directed graph while introducing attention mechanisms and residual connec-
tions. Zhang et al. [6] map the skeleton information to a higher-level space and embed
two kinds of semantic information, joint type, and frame index, to construct a lightweight
model to effectively capture the differences between human actions. Song et al. [7] use the
early fused multi-branch architecture and bottleneck residuals to realize the light weight
of the model. Such methods are able to handle irregular topological data, taking full
account of the connections among skeleton nodes.

3. Methods.

3.1. Unified spatiotemporal graph convolution. The disadvantage of the spatiotem-
poral separation graph convolution is that it cannot directly extract the connections across
space-time. As shown in Figure 1(a), joint 1 is very close to joint 2. However, these two
joints do not belong to the same spatial dimension nor the same temporal dimension, so a
spatial and temporal graph convolution is required to establish the connection. However,
as the number of aggregation layers increases, more interference information is generated,
weakening the connection between these two joints.

(a) Spatiotemporal separation (b) Unified spatiotemporal (c) Multi-scale unified spatio-
graph convolution graph convolution temporal graph convolution

FiGure 1. Comparison of three graph convolution methods

Unified spatiotemporal graph convolution enables cross-spatiotemporal connectivity, as
shown in Figure 1(b). First, a sliding time window is given in the time dimension, and
the window size is set to s. Each sliding step of the time window yields a spatiotemporal
subgraph G = (Vj, E;) based on the skeleton nodes and neighboring edges. V; represents
the union of each frame joint point set in the s frame, and the initialization form of E; is
the adjacency matrix A, and the specific expression is as follows:

A ... A
A, = . (1)
A .. A
where A is the adjacency matrix of skeleton joint points in a single frame, and the size
is M x M. A, is the tiling of A in each frame, with a total of s frames, so the size is
sM xsM. [AS] = A means that each node in V; can be connected to the adjacent nodes
ij

of the same node in frame j. All joint points not only have spatial connections within a
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single frame, but also have direct connections with the adjacent one-hop neighbors of the
same node in the s frame. From this, the sliding feature X, € RT*sMxC can be obtained.
Then use A, as the adjacency matrix to perform cross-spatiotemporal graph convolution
on X,. The details are as follows:

(Xout)s =0 [f)s_%Asf)s_%(Xm)sz (2)

where D; is the degree matrix of A,, W is the weight parameter, and o is the ReLU
activation function.

3.2. Multi-scale graph convolution. To establish connections between neighboring
nodes with different step sizes, multi-scale graph convolution is designed. The multi-scale
adjacency matrix is defined as follows:

1, if d(Vi, Vj) =P

(&) =4 1 ifi=j (3)
I 0, otherwise

where d(v;,Vv;) represents the shortest hop distance between v; and v;. Multi-scale adja-
cency matrix A, obtained by setting different p values, the weights of nodes of different
scales are not affected by nodes of other scales. The representation of multi-scale graph

convolution is as follows:

V1. .1

Dp QAPD;D 2Xin(vvin)p] (4)
0

The convolution of graphs at different scales is aggregated in an additive manner in
order to make the information of nodes with different p values valid for a long time.
Extending multi-scale graph convolution to unified spatiotemporal graph convolution can
result in multi-scale unified spatiotemporal graph convolution, as shown in Figure 1(c).
The calculation method of multi-scale unified spatiotemporal graph convolutional network
is shown as follows:

(Xout)s =0 [Z f)s_éAs,st_é [Xin]S(Win)p] (5)

3.3. External attention. The external attention mechanism shares the parameters of
each sample through two small external shared memories and explores the potential con-
nections between different samples to improve the generalization ability of the entire mod-
el. The input skeleton sequence is characterized as X € RE*"*V where C' is the channel
dimension, T is the number of frames of a single complete action sequence, and V' is the
number of nodes in the skeleton topology map. The two independent input memories are
Miey € R and My,e € RO*C) where @ is the number of elements. First, transform
the input features to obtain Xquery € RY*Y, where N = T x V. The attention map H
is then generated by computing the correlation between X uery and the memory Miey.
Finally, after the double normalization operation, the attention map H is multiplied with
another memory M., to obtain the new feature map. The specific process is shown in
Figure 2. The calculation is as follows:

I:I = XqueryMEey (6)
H = doubleNorm (ﬁ) (7)
Xout = HMyaue <8)

My and My,,e are learnable. Since there is no prior, both can be implemented using
linear layers and optimized by end-to-end backpropagation. The doubleNorm is a double
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normalization operation. Usually, only softmax is used in the algorithm to normalize V.
However, note that the attention map is obtained by channel dimension transformation,
which is also sensitive to channel information, so the L1 normalization operation is per-
formed on the channel dimension.

Ix

x &
[,
) M key
doubleNorm
Mo, Matrix multiplication
[N
Xm“ Memory Unit

FI1GURE 2. External attention mechanism process

The multi-scale unified spatialtemporal graph convolution (MUGC) module and the
external attention (EA) module have no order in the training process. As shown in Figure
3, each layer of the network inputs features into the two modules at the same time. Finally,
the features learned by the two modules are added together and then input into the next
layer network.

FIGURE 3. Attentional multi-scale unified spatiotemporal graph convolution

3.4. Multi-stream architecture. Extending the original features into more new high-
quality features can effectively improve the performance of the model. We divide the
features into 6 types of inputs.

1) Joint information. The 3D coordinate information of the skeleton nodes, denoted as
v = (z,y,2).

2) Relative joint information. Find a central joint point in the skeleton and represent
the joints of the human body as a coordinate system with variations. Given that the
central node at frame t is vy = (Tet, Yer, 2ct) and the another node is v;; = (24, Vi, 2it),
the relative joint information can be expressed as r;; = (Tit — Tet, Yit — Yers Zit — Zet)-

3) Bone information. The difference between adjacent joint points indicates the length
and direction of the bone. Given that the source node at frame ¢ is v;; = (2i¢, Yis, 2it)
and the target node is v;; = (x4, ¥+, 2j+), the bone information can be expressed as
Cviivie — (xj,t = Lits Yjt — Yiey 256 — Zzt)

4) Bone angle information. The angle of each bone can more accurately extract sub-
tle changes in human motion. Given that the bone information at frame tis €;; = (24, Yi .

2; 1), the bone angle information can be expressed as a; ; = arccos (ei,t / 2, + 2, + Z?t> .

5) Fast time information. The high frame rate motion information is the displacement
of the same joint in consecutive adjacent frames, which helps to capture some local and
fast motion details. Given that the coordinate information of the joints at frame ¢ is
Vit = (Tit, Yit, zit), and the coordinate information of the same joints at frame ¢ + 1 is
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Vitr1 = (Titg1, Yirs1, Zizr1), the fast time information can be expressed as mf; ;1 =
(ilfz‘,tﬂ — Tty Yit+1 — Yits i1 — Zi,t)-

6) Slow time information. The low frame rate motion information is the difference
between two adjacent frames of the same joint, which helps to capture the action with a
strong overall correlation. Given that the coordinate information of the joints at frame ¢
is Vi1 = (i, Yir, %it), and the coordinate information of the same joints at frame ¢ + 2
is Viiro = (%it42, Yirto, Zizr2), the slow time information can be expressed as ms; ;0 =
($i,t+2 — Tity Yit+2 — Yits Zig+2 — Zzt)

3.5. Overall framework. The overall framework of the AMU-GCN is shown in Figure
4. The network is divided into six streams of input, and after three layers of attentional
multi-scale unified spatiotemporal graph convolution (AMU-GC) module, the six streams
of recognition results are fused according to the corresponding weight ratio to output the
final action classification. The initial number of channels is 3, and the number of channels
output by each layer of AMU-GC module is 96, 192 and 384, respectively.
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FIGURE 4. Overall framework of AMU-GCN

4. Main Results.

4.1. Ablation experiments. The model is compared and evaluated on two 3D human
skeleton datasets, NTU RGB+D 60 and NTU RGB+D 120. We set the unified spa-
tiotemporal graph convolution as a dual path, and the sliding window s is initialized to
two values, one of which is set to 3 to capture short-distance spatiotemporal features, and
the other is set to 5 to capture long-distance spatiotemporal features. The value of the
multi-scale graph convolution parameter P is set to 5 and @) is set to 64 in the external
attention. As shown in Table 1, it can be seen that the multi-scale unified spatiotem-
poral graph convolution is improved compared with the baseline spatial temporal graph
convolutional network (ST-GCN) [2]. Combining the external attention mechanism with
multi-scale unified spatio-temporal graph convolution, the expressive ability of the model
is strengthened, and the experiment accuracy is improved to a certain extent.

As shown in Table 2, 1s indicates that the input feature is joint information, and 6s
indicates that the input features are joint information, relative joint information, bone

TABLE 1. Model accuracy under different configurations on NTU RGB+D

60 dataset
Methods X-sub (%) | X-view (%)
Baseline ST-GCN [2] 84.2 89.7
AMU-GCN w/o EA 84.6 92.2
AMU-GCN 86.5 93.0
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information, bone angle information, fast time information, and slow time information.
The experiment results show that the accuracy of the model improves with each additional
stream of feature information.

TABLE 2. Multi-stream architecture comparison experiments on NTU RGB
+D 60 and NTU RGB+D 120 datasets

Methods X-sub (%) | X-view (%) | X-sub120 (%) | X-set120 (%)
1s AMU-GCN 86.5 93.0 77.9 82.2
2s AMU-GCN 89.5 94.7 84.5 87.0
3s AMU-GCN 90.1 95.4 84.7 87.8
4s AMU-GCN 90.4 95.5 84.9 88.1
5s AMU-GCN 90.7 95.6 85.1 88.2
6s AMU-GCN 90.8 95.7 85.3 88.6

4.2. Comparison with previous models. The model is evaluated on two public data-
sets, NTU RGB+D 60 and NTU RGB-+D 120, and compared with other action recognition
methods, as detailed in Table 3. Compared with RNNs-based [14], CNNs-based [17] and
GCNs-based [2-6,9] methods, AMU-GCN shows a significant improvement in accuracy.
Experiment results show that the AMU-GCN has superior performance.

TABLE 3. Comparisons with different models on NTU RGB+D 60 and
NTU RGB+D 120 datasets

Methods X-sub (%) | X-view (%) | X-sub120 (%) | X-set120 (%)
ST-LSTM [14] 69.2 T 55.7 57.9
Synthesized CNN [17] 80.0 87.2 - —
ST-GCN [2] 81.5 88.3 70.7 73.2
2s AS-GCN [3] 86.8 94.2 77.9 78.5
25 AGON [4] 88.5 95.1 84.2 85.5
SGN [6] 89.0 94.5 79.2 81.5
MSSF-GCN [9] 89.5 96.2 84.4 86.1
45 DGNN [3] 89.9 96.1 - -
6s AMU-GCN (ours) 90.8 95.7 85.3 88.6

5. Conclusions. In this paper, we propose an attentional multi-scale unified spatiotem-
poral graph convolutional network. First, the multi-scale unified spatiotemporal graph
convolution not only realizes the barrier-free spatiotemporal graph convolution but also
ensures the validity of different scale features. Meanwhile, the external attention mecha-
nism can learn more representative features from the whole sample through the external
memory. In addition, multi-stream architecture integrates various high-quality features
to build a reliable model and provide more accurate action recognition information. Com-
pared with other mainstream methods, the model shows excellent performance on public
datasets NTU RGB+D 60 and NTU RGB+D 120. Future research directions will focus
on how to achieve lightweight models.
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