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Abstract. The focus of this paper is to present the idea of a neutrosophic bipolar-valued
fuzzy subsemigroup. We examine the concepts of the neutrosophic bipolar-valued fuzzy
left (right, interior) ideal and demonstrate that they align with regular and intra-regular
semigroups. Additionally, we introduce the notion of a neutrosophic bipolar-valued fuzzy
simple and establish that a semigroup is only considered simple if it is neutrosophic
bipolar-valued fuzzy simple.
Keywords: Neutrosophic sets, Bipolar fuzzy ideal, Subsemigroups, Regular semigroup,
Intra-regular semigroup

1. Introduction. In the realm of mathematics, sets are used to represent collections of
objects that share common properties. However, in real-world scenarios, the properties
of objects are often uncertain or vague. To handle such uncertainties, the concept of
fuzzy sets was introduced by Zadeh [1] in 1965. Fuzzy sets allow for the representation
of degrees of membership of an object to a set rather than just a binary classification
of whether the object belongs to the set or not. Building upon the concept of fuzzy
sets, Atanassov [2] introduced intuitionistic fuzzy sets, which generalize fuzzy sets by
considering not only the degree of membership but also the degree of non-membership
of an object to a set. Neutrosophic sets, introduced by Smarandache [3], further extend
the concept of fuzzy sets by representing truth-membership, indeterminacy-membership,
and falsity-membership of an object to a set independently. These concepts have been
applied to various algebraic structures, including fields, rings, vector spaces, groups, and
semigroups [4, 5, 6, 7, 8, 9, 10, 11]. In particular, fuzzy sets in semigroups were introduced
and studied by Kuroki [12], who investigated fuzzy (left, right) ideals and fuzzy bi-ideals
in semigroups.

In this context, the concept of a bipolar fuzzy semigroup by Zhang [13], which allows
for the representation of degrees of membership, degrees of non-membership, and degrees
of partial membership simultaneously, is a helpful extension of classical, fuzzy, and neu-
trosophic semigroups. Moreover, it has potential applications in handling uncertainties
and partial knowledge in various fields. Recently, in 2021, Gaketem and Khamrot [14]
introduced the concepts of bipolar fuzzy weakly interior ideals of semigroups. The rela-
tionship between bipolar fuzzy weakly interior ideals and bipolar fuzzy left (right) ideals
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and the relationship between bipolar fuzzy weakly interior ideals and bipolar fuzzy inte-
rior ideals are also discussed. Furthermore, Gaketem et al. [15] introduced the concept of
bipolar fuzzy implicative UP-filters in UP-algebras. Based on these notions, bipolar fuzzy
set theory and its applications were developed [16, 17, 18].
This paper introduces neutrosophic bipolar-valued fuzzy sets in semigroups. Firstly,

definitions of neutrosophic bipolar-valued fuzzy ideals and neutrosophic bipolar-valued
fuzzy interior ideals of semigroups are provided. Then we prove that the neutrosophic
bipolar-valued fuzzy ideals and the neutrosophic bipolar-valued fuzzy interior ideals co-
incide with regular and intra-regular semigroups. Lastly, we introduce the concept of a
neutrosophic bipolar-valued fuzzy simple in the semigroup. We characterize and prove a
simple semigroup in terms of the neutrosophic bipolar-valued fuzzy interior ideal.

2. Problem Statement and Preliminaries. In this section, we give definitions that
are used in this paper. By a subsemigroup of a semigroup S, we mean a non-empty subset
A of S such that A2 ⊆ A, and by a left (right) ideal of S, we mean a non-empty subset
A of S such that SA ⊆ A (AS ⊆ A). By a two-sided ideal or simply an ideal, we mean a
non-empty subset of a semigroup S that is both a left and a right ideal of S. A non-empty
subset A of S is called an interior ideal of S if SAS ⊆ A. A semigroup S is called regular if,
for all a ∈ S, there exists x ∈ S such that a = axa. A semigroup S is called intra-regular
if, for all a ∈ S, there exists x, y ∈ S such that a = xa2y.
Zadeh studied the theory of fuzzy sets in 1965 [1], in which he defined as follows: A

fuzzy set ω of a non-empty set F is a function from F into the closed interval [0, 1], i.e.,
ω : F → [0, 1].

Definition 2.1. A bipolar fuzzy set (shortly, BF set) ω on X is an object having the
form

ω :=
{(
x, ω+(x), ω−(x)

)∣∣x ∈ X
}
,

where ω+ : X → [0, 1] and ω+ : X → [−1, 0].

Definition 2.2. [3] Let X be a non-empty set. A neutrosophic sets (NS) A in X is the
structure

A = {⟨x, TA(x), IA(x), FA(x)⟩ : x ∈ X},
where TA : X → [0, 1] is a truth membership function, IA : X → [0, 1] is an indeterminate
membership function, and FA : X → [0, 1] is a false membership function.

3. Neutrosophic Bipolar-Valued Fuzzy Sets in Semigroups. In this section, we
shall introduce the fundamental operations that can be carried out on neutrosophic
bipolar-valued fuzzy sets of the semigroup. For brevity, we will employ the abbreviat-
ed term NBF instead of repeatedly using the full term “neutrosophic bipolar-valued fuzzy
set”.

Definition 3.1. [3] Let X be a non-empty set. A neutrosophic bipolar-valued fuzzy set
(NBF) A in X is an object of the form

A =
{⟨

x, T+
A (x), I+A (x), F

+
A (x), T−

A (x), I−A (x), F
−
A (x)

⟩
: x ∈ X

}
,

where T+
A , I+A , F

+
A : X → [0, 1] and T−

A , I−A , F
−
A : X → [−1, 0].

For simplicity, we use the symbol A = (A+, A−) for the NBF

A =
{⟨

x, T+
A (x), I+A (x), F

+
A (x), T−

A (x), I−A (x), F
−
A (x)

⟩
: x ∈ X

}
.
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Definition 3.2. An NBF set A = (A+, A−) in a semigroup S is called an NBF subsemi-
group if it satisfies

(∀x, y ∈ S)



T+
A (xy) ≥ T+

A (x) ∧ T+
A (y),

I+A (xy) ≤ I+A (x) ∨ I+A (y),

F+
A (xy) ≥ F+

A (x) ∧ F+
A (y),

T−
A (xy) ≤ T−

A (x) ∨ T−
A (y),

I−A (xy) ≥ I−A (x) ∧ I−A (y),

F−
A (xy) ≤ F−

A (x) ∨ F−
A (y)


Example 3.1. Consider a semigroup S = {z1, z2, z3} with the following Cayley table:

⋆ z1 z2 z3
z1 z3 z3 z3
z2 z3 z3 z1
z3 z3 z2 z3

Define an NBF A = (A+, A−) in S as follows:

S T+
A I+A F+

A T−
A I−A F−

A

z1 0.3 0.5 0.6 −0.4 −0.6 −0.8
z2 0.2 0.3 0.8 −0.6 −0.7 −0.6
z3 0.7 0.8 0.5 −0.2 −0.3 −0.9

Then A = (A+, A−) is an NBF subsemigroup of S.

Definition 3.3. Let NBF A = (A+, A−) in a semigroup S and µ1, µ2, µ3 ∈ [0, 1], δ1, δ2,
δ3 ∈ [−1, 0], the sets (

T+
A

)µ1 =
{
k ∈ S

∣∣T+
A (k) ≥ µ1

}
,(

I+A
)µ2 =

{
k ∈ S

∣∣I+A (k) ≤ µ2

}
,(

F+
A

)µ3 =
{
k ∈ S

∣∣F+
A (k) ≥ µ3

}
.

The set
P+
A (µ1, µ2, µ3) :=

{
k ∈ S

∣∣T+
A (k) ≥ µ1, I

+
A (k) ≤ µ2, F

+
A (k) ≥ µ3

}
is called a positive (µ1, µ2, µ3)-level of A = (A+, A−). It is evident that P+

A (µ1, µ2, µ3) =(
T+
A

)µ1 ∩
(
I+A

)µ2 ∩
(
F+
A

)µ3, and(
T−
A

)δ1 = {
k ∈ S

∣∣T−
A (k) ≤ δ1

}
,(

I−A
)δ2 = {

k ∈ S
∣∣I−A (k) ≥ δ2

}
,(

F−
A

)δ3 = {
k ∈ S

∣∣F−
A (k) ≤ δ3

}
.

The set
N−

A (δ1, δ2, δ3) :=
{
k ∈ S

∣∣T−
A (k) ≤ δ1, I

−
A (k) ≥ δ2, F

−
A (k) ≤ δ3

}
is called a negative (δ1, δ2, δ3)-level of A = (A+, A−). It is evident that N−

A (δ1, δ2, δ3) =(
T−
A

)δ1 ∩ (
I−A

)δ2 ∩ (
F−
A

)δ3.
The set

C±
A (µ1, µ2, µ3, δ1, δ2, δ3) = P+

A (µ1, µ2, µ3) ∩N−
A (δ1, δ2, δ3)

is called the bipolar (µ1, µ2, µ3, δ1, δ2, δ3)-level of A = (A+, A−).
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Definition 3.4. An NBF set A = (A+, A−) in a semigroup S is called an NBF right
(left) ideal if it satisfies

(∀x, y ∈ S)



T+
A (xy) ≥ T+

A (x)(T+
A (xy) ≥ T+

A (y)),

I+A (xy) ≤ I+A (x)(I
+
A (xy) ≤ I+A (y)),

F+
A (xy) ≥ F+

A (x)(F+
A (xy) ≥ F+

A (y)),

T−
A (xy) ≤ T−

A (x)(T−
A (xy) ≤ T−

A (y)),

I−A (xy) ≥ I−A (x)(I
−
A (xy) ≥ I−A (y)),

F−
A (xy) ≤ F−

A (x)(F−
A (xy) ≤ F−

A (y))


By a (two-sided) NBF ideal, we mean a left and right NBF ideal.

Example 3.2. Consider a semigroup S = {z1, z2, z3} with the following Cayley table:

⋆ z1 z2 z3
z1 z1 z1 z1
z2 z1 z1 z1
z3 z1 z1 z3

Define an NBF A = (A+, A−) in S as follows:

S T+
A I+A F+

A T−
A I−A F−

A

z1 0.7 0.8 0.1 −0.2 −0.3 −0.9
z2 0.2 0.3 0.2 −0.6 −0.7 −0.7
z3 0.1 0.5 0.2 −0.7 −0.5 −0.8

It is easy to verify that A = (A+, A−) is an NBF ideal of S. Every right (resp. left) NBF
ideal is an NBF subsemigroup. However, the converse may not be true, as seen in the
following example.

Example 3.3. Consider a semigroup S = {z1, z2, z3, z4} with the following Cayley table:

⋆ z1 z2 z3 z4
z1 z1 z1 z1 z1
z2 z1 z1 z1 z1
z3 z1 z1 z1 z2
z4 z1 z1 z2 z3

Define an NBF A = (A+, A−) in S as follows:

S T+
A I+A F+

A T−
A I−A F−

A

z1 0.5 0.7 0.1 −0.2 −0.1 −0.3
z2 0.3 0.4 0.3 −0.6 −0.7 −0.4
z3 0.5 0.5 0.2 −0.4 −0.5 −0.4
z4 0.2 0.2 0.5 −0.6 −0.8 −0.5

It is easy to verify that A = (A+, A−) is an NBF subsemigroup of S, but it is not a left
NBF ideal of S, since T+

A (z4z3) = T+
A (z2) = 0.3 < 0.5 = T+

A (z3).

Definition 3.5. Let S be a semigroup. An NBF subsemigroup A = (A+, A−) in S is an
NBF interior ideal in S if the assertions below are valid:

(∀a, x, y ∈ S)



T+
A (xay) ≥ T+

A (a),

I+A (xay) ≤ I+A (a),

F+
A (xay) ≥ F+

A (a),

T−
A (xay) ≤ T−

A (a),

I−A (xay) ≥ I−A (a),

F−
A (xay) ≤ F−

A (a)


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Theorem 3.1. Every NBF ideal of a semigroup S is an NBF interior ideal of S.

Definition 3.6. For any non-empty subset K of set X, the characteristic NBF function
of K in X is defined to be a structure

χK =
{⟨

x, T+
χK

(x), I+χK
(x), F+

χK
(x), T−

χK
(x), I−χK

(x), F−
χK

(x)
⟩
: x ∈ X

}
,

where

T+
χK

: X → [0, 1];x 7→ T+
χK

(x) :=

{
1 if x ∈ K
0 if x /∈ K,

I+χK
: X → [0, 1];x 7→ I+χK

(x) :=

{
0 if x ∈ K
1 if x /∈ K,

F+
χK

: X → [0, 1];x 7→ F+
χK

(x) :=

{
1 if x ∈ K
0 if x /∈ K,

T−
χK

: X → [−1, 0];x 7→ T−
χK

(x) :=

{
−1 if x ∈ K
0 if x /∈ K,

I−χK
: X → [−1, 0];x 7→ I−χK

(x) :=

{
0 if x ∈ K
−1 if x /∈ K,

F−
χK

: X → [−1, 0];x 7→ F−
χK

(x) :=

{
−1 if x ∈ K
0 if x /∈ K.

For simplicity, we use the symbol χK =
(
χ+
K , χ

−
K

)
for the characteristic NBF (short-

ly, CNBF) function χK =
{⟨

x, T+
χK

(x), I+χK
(x), F+

χK
(x), T−

χK
(x), I−χK

(x), F−
χK

(x)
⟩
: x ∈ X

}
.

The semigroup S can be considered a fuzzy subset of itself, i.e., χS(x) = ⟨1, 1, 0,−1,−1, 0⟩
for all x ∈ S.

Definition 3.7. Let A = (A+, A−) and B = (B+, B−) be an NBF in a semigroup S,
Then

1. A = (A+, A−) is called an NBF in B = (B+, B−), denoted by A ⊑ B = (A+ ⊑
B+, A− ⊑ B−) if T+

A (x) ≤ T+
B (x), I+A (x) ≥ I+B (x), F

+
A (x) ≤ F+

B (x), T−
A (x) ≥ T−

B (x),
I−A (x) ≤ I−B (x), F

−
A (x) ≥ F−

B (x), for all x ∈ S. If A ⊑ B and B ⊑ A, then we say
that A = B.

2. The union of two NBF A = (A+, A−) and B = (B+, B−) is defined as
A⊔B = (A+⊔B+, A−⊔B−) =

{⟨
x,
(
T+
A ∪ T+

B

)
(x),

(
I+A ∪ I+B

)
(x),

(
F+
A ∪ F+

B

)
(x),(

T−
A ∪ T−

B

)
(x),

(
I−A ∪ I−B

)
(x),

(
F−
A ∪ F−

B

)
(x)

⟩
: x ∈ X

}
, where ∀x ∈ S,(

T+
A ∪ T+

B

)
(x) = T+

A (x) ∨ T+
B (x),

(
I+A ∪ I+B

)
(x) = I+A (x) ∧ I+B (x),

(
F+
A ∪ F+

B

)
(x)

= F+
A (x) ∨ F+

B (x),(
T−
A ∪ T−

B

)
(x) = T−

A (x) ∧ T−
B (x),

(
I−A ∪ I−B

)
(x) = I−A (x) ∨ I−B (x),

(
F−
A ∪ F−

B

)
(x)

= F−
A (x) ∧ F−

B (x).
3. The intersection of two NBF A = (A+, A−) and B = (B+, B−) is defined as

A ⊓ B=(A+ ⊓B+, A− ⊓B−)=
{⟨

x,
(
T+
A ∩ T+

B

)
(x),

(
I+A ∩ I+B

)
(x),

(
F+
A ∩ F+

B

)
(x),(

T−
A ∩ T−

B

)
(x),

(
I−A ∩ I−B

)
(x),

(
F−
A ∩ F−

B

)
(x)

⟩
: x ∈ X

}
, where ∀x ∈ S,(

T+
A ∩ T+

B

)
(x) = T+

A (x) ∧ T+
B (x),

(
I+A ∩ I+B

)
(x) = I+A (x) ∨ I+B (x),

(
F+
A ∩ F+

B

)
(x)

= F+
A (x) ∧ F+

B (x),(
T−
A ∩ T−

B

)
(x) = T−

A (x) ∨ T−
B (x),

(
I−A ∩ I−B

)
(x) = I−A (x) ∧ I−B (x),

(
F−
A ∩ F−

B

)
(x)

= F−
A (x) ∨ F−

B (x).

Lemma 3.1. If K is a subsemigroup of a semigroup S, then the CNBF function χK =(
χ+
K , χ

−
K

)
is an NBF subsemigroup of S.

Proof: Suppose that K is a subsemigroup of S and let x, y ∈ S.
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If x, y ∈ K, then xy ∈ K. Thus, 1 = T+
χK

(x) = T+
χK

(y) = T+
χK

(xy), 0 = I+χK
(x) =

I+χK
(y) = I+χK

(xy), 1 = F+
χK

(x) = F+
χK

(y) = F+
χK

(xy), −1 = T−
χK

(x) = T−
χK

(y) = T−
χK

(xy),
0 = I−χK

(x) = I−χK
(y) = I−χK

(xy), and −1 = F−
χK

(x) = F−
χK

(y) = F−
χK

(xy).

Hence, T+
K (xy) ≥ T+

K (x) ∧ T+
K (y), I+K(xy) ≤ I+K(x) ∨ I+K(y), F

+
K (xy) ≥ F+

K (x) ∧ F+
K (y),

T−
K (xy) ≤ T−

K (x) ∨ T−
K (y), I−K(xy) ≥ I−K(x) ∧ I−K(y), F

−
K (xy) ≤ F−

K (x) ∨ F−
K (y).

If x /∈ K or y /∈ K, then T+
K (xy) ≥ T+

K (x)∧ T+
K (y), I+K(xy) ≤ I+K(x)∨ I+K(y), F

+
K (xy) ≥

F+
K (x) ∧ F+

K (y), T−
K (xy) ≤ T−

K (x) ∨ T−
K (y), I−K(xy) ≥ I−K(x) ∧ I−K(y), F

−
K (xy) ≤ F−

K (x) ∨
F−
K (y). Thus, χK =

(
χ+
K , χ

−
K

)
is an NBF subsemigroup of S. �

Lemma 3.2. If χK =
(
χ+
K , χ

−
K

)
is an NBF subsemigroup of S, then K is a subsemigroup

in a semigroup S.

Proof: Suppose that χK =
(
χ+
K , χ

−
K

)
is an NBF subsemigroup of S, and let x, y ∈ S.

Then T+
χK

(x) = T+
χK

(y) = 1, I+χK
(x) = I+χK

(y) = 1, F+
χK

(x) = F+
χK

(y) = 0, T−
χK

(x) =
T−
χK

(y) = −1, I−χK
(x) = I−χK

(y) = −1, and F−
χK

(x) = F−
χK

(y) = 0. By assumption,{
T+
K (xy) ≥ T+

K (x) ∧ T+
K (y), I+K(xy) ≤ I+K(x) ∨ I+K(y), F

+
K (xy) ≥ F+

K (x) ∧ F+
K (y),

T−
K (xy) ≤ T−

K (x) ∨ T−
K (y), I−K(xy) ≥ I−K(x) ∧ I−K(y), F

−
K (xy) ≤ F−

K (x) ∨ F−
K (y).

(1)

If xy /∈ K, then by (1), 0 = T+
K (xy) ≥ 1, 1 = I+K(xy) ≤ 0, 0 = F+

K (xy) ≥ 1,
0 = T−

K (xy) ≤ −1, −1 = I−K(xy) ≥ 0, 0 = F−
K (xy) ≤ −1. It is a contradiction. Hence,

xy ∈ K. Therefore, K is a subsemigroup in S. �
The following result is an immediate consequence of Lemma 3.1 and Lemma 3.2.

Theorem 3.2. Let K be a non-empty subset of a semigroup S. Then K is a subsemigroup
of S if and only if χK =

(
χ+
K , χ

−
K

)
is an NBF subsemigroup of S.

Theorem 3.3. Let S be a semigroup. Then, for any K ⊆ S, the given assertions are
equivalent:

1. K is a right ideal (resp., left ideal),
2. χK =

(
χ+
K , χ

−
K

)
is an NBF right ideal (resp., NBF left ideal).

Proof: (1⇒2) Suppose that K is a right ideal of S and x, y ∈ S. If x ∈ K, then
T+
χK

(xy) ≥ T+
χK

(x) = 1, I+χK
(xy) ≤ I+χK

(x) = 0, F+
χK

(xy) ≥ F+
χK

(x) = 1, T−
χK

(xy) ≤
T−
χK

(x) = −1, I−χK
(xy) ≥ I−χK

(x) = 0, and F−
χK

(xy) ≤ F−
χK

(x) = −1. If x /∈ K, then
T+
χK

(xy) ≥ T+
χK

(x) = 0, I+χK
(xy) ≤ I+χK

(x) = 1, F+
χK

(xy) ≥ F+
χK

(x) = 0, T−
χK

(xy) ≤
T−
χK

(x) = 0, I−χK
(xy) ≥ I−χK

(x) = −1, and F−
χK

(xy) ≤ F−
χK

(x) = 0. By Definition 3.6,

χK =
(
χ+
A, χ

−
K

)
is an NBF right ideal.

(2⇒1) Assume χK =
(
χ+
K , χ

−
K

)
is an NBF right ideal. Let x ∈ K and y ∈ S. Then

T+
χK

(x) = 1, I+χK
(x) = 0, F+

χK
(x) = 1, T−

χK
(x) = −1, I−χK

(x) = 0, and F−
χK

(x) = −1, which
imply xy ∈ K. Hence, by Definition 3.6, K is a right ideal. �
Theorem 3.4. Let S be a semigroup. Then for any K ⊆ S, the given assertions are
equivalent:

1. K is an interior ideal,
2. χK =

(
χ+
K , χ

−
K

)
is an NBF interior ideal.

Proof: (1⇒2) Suppose that K is an interior ideal of S, let x, y, a ∈ S. If a ∈ K, then
T+
χK

(xay) ≥ T+
χK

(a) = 1, I+χK
(xay) ≤ I+χK

(a) = 0, F+
χK

(xay) ≥ F+
χK

(a) = 1, T−
χK

(xay) ≤
T−
χK

(a) = −1, I−χK
(xay) ≥ I−χK

(a) = 0, and F−
χK

(xay) ≤ F−
χK

(a) = −1. If a /∈ K, then
T+
χK

(xay) ≥ T+
χK

(a) = 0, I+χK
(xay) ≤ I+χK

(a) = 1, F+
χK

(xay) ≥ F+
χK

(a) = 0, T−
χK

(xay) ≤
T−
χK

(a) = 0, I−χK
(xay) ≥ I−χK

(a) = −1, and F−
χK

(xay) ≤ F−
χK

(a) = 0. By Definition 3.6,

χK =
(
χ+
K , χ

−
K

)
is an NBF interior ideal.
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(2⇒1) Assume χK =
(
χ+
K , χ

−
K

)
is an NBF interior ideal. Let x, y, a ∈ S. Then T+

χK
(a) =

1, I+χK
(a) = 0, F+

χK
(a) = 1, T−

χK
(a) = −1, I−χK

(a) = 0, and F−
χK

(a) = −1, which imply
xay ∈ K. Hence, by Definition 3.6, K is an interior ideal. �
Theorem 3.5. Let S be a semigroup. Then the arbitrary intersection (resp., union) of
NBF interior ideals in S is an NBF interior ideal of S.

Proof: The proof is a routine procedure. �
Theorem 3.6. Let S be a semigroup. If S is regular, then NBF interior ideals of S are
NBF ideals.

Proof: Assume A = (A+, A−) is an NBF interior ideal of S, and let x, y ∈ S. As y ∈ S
and S is regular, there is r ∈ S such that y = yry.

Now, T+
A (xy) ≥ T+

A (xyry) ≥ T+
A (y), I+A (xy) ≤ I+A (xyry) ≤ I+A (y), F

+
A (xy) ≥ F+

A (xyry)
≥ F+

A (y), T−
A (xy) ≤ T−

A (xyry) ≤ T−
A (y), I−A (xy) ≥ I−A (xyry) ≥ I−A (y), F−

A (xy) ≤
F−
A (xyry) ≤ F−

A (y). Therefore, A = (A+, A−) is an NBF left ideal. In a similar way,
we can claim that A = (A+, A−) is an NBF right ideal. Hence, A = (A+, A−) is an NBF
ideal of S. �
Theorem 3.7. Let S be a semigroup. If S is an intra-regular, then NBF interior ideals
of S are NBF ideals.

Proof: Assume A = (A+, A−) is an NBF interior ideal of S, and let x, y ∈ S. As y ∈ S
and S is an intra-regular, there exist s, t ∈ S such that y = sy2t.

Now, T+
A (xy) ≥ T+

A (xsy2t) ≥ T+
A (y), I+A (xy) ≤ I+A (xsy2t) ≤ I+A (y), F+

A (xy) ≥
F+
A (xsy2t) ≥ F+

A (y), T−
A (xy) ≤ T−

A (xsy2t) ≤ T−
A (y), I−A (xy) ≥ I−A (xsy2t) ≥ I−A (y),

F−
A (xy) ≤ F−

A (xsy2t) ≤ F−
A (y). Therefore, A = (A+, A−) is an NBF left ideal. Similarly,

we can claim that A = (A+, A−) is an NBF right ideal. Hence, A = (A+, A−) is an NBF
ideal of S. �
Definition 3.8. A semigroup S is said to be

1. left (resp., right) simple if it does not contain any proper left (resp., right) ideal of
S.

2. simple if it does not contain any proper ideal of S.

Definition 3.9. A semigroup S is known as an NBF simple if all the NBF ideals are
constant functions, i.e., for any NBF ideal A = (A+, A−) in S, we can have T+

A (x) =
T+
A (y), I+A (x) = I+A (y), F

+
A (x) = F+

A (y), T−
A (x) = T−

A (y), I−A (x) = I−A (y) and F−
A (x) =

F−
A (y) for all x, y ∈ S.

Let S be a semigroup. Then, for any k ∈ S, we define Jk ⊆ S as follows:
Jk :=

{
m ∈ S

∣∣T+
A (m) ≥ T+

A (k), I+A (m) ≤ I+A (k), F
+
A (m) ≥ F+

A (k), T−
A (m) ≤ T−

A (k),

I−A (m) ≥ I−A (k), F
−
A (m) ≤ F−

A (k)
}
.

Theorem 3.8. Let S be a semigroup. If A = (A+, A−) is an NBF right ideal (resp., left
ideal, ideal) of S, then, for any Jk is a right ideal (resp., left ideal, ideal) in S.

Proof: Let k ∈ S, then clearly ∅ ̸= Jk ⊆ S. Let x ∈ Jk and y ∈ S, then xy ∈ Jk.
Since x, y ∈ S and A = (A+, A−) is an NBF right ideal, we get T+

A (xy) ≥ T+
A (x),

I+A (xy) ≤ I+A (x), F
+
A (xy) ≥ F+

A (x), T−
A (xy) ≤ T−

A (x), I−A (xy) ≥ I−A (x), F
−
A (xy) ≤ F−

A (x).
Since x ∈ Jk, we get T+

A (x) ≥ T+
A (k), I+A (x) ≤ I+A (k), F

+
A (x) ≥ F+

A (k), T−
A (x) ≤ T−

A (k),
I−A (x) ≥ I−A (k), F

−
A (x) ≤ F−

A (k) which imply that xy ∈ Jk. Therefore, Jk is the right ideal
in S. �
Theorem 3.9. If S is a semigroup, then S = (S+, S−) is an NBF simple if and only if
S is simple.
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Proof: Suppose that S = (S+, S−) is an NBF simple. Let J be ideal in S. Then, by
Theorem 3.3, χS =

(
χ+
S , χ

−
S

)
is an NBF ideal. We now prove that S = J . Let k ∈ S. Since

S is an NBF simple, χS =
(
χ+
S , χ

−
S

)
is constant and χS(k) = χS(k

′) for every k′ ∈ S. In
particular, we have T+

χA
(k) = T+

χA
(d) = 1, I+χA

(k) = I+χA
(d) = 0, F+

χA
(k) = F+

χA
(d) = 1,

T−
χA
(k) = T−

χA
(d) = −1, I−χA

(k) = I−χA
(d) = 0, and F−

χA
(k) = F−

χA
(d) = −1 for any d ∈ J

which gives k ∈ J . Thus, S ⊆ J , and hence S = J .
Conversely, let S = (S+, S−) is an NBF ideal with x, y ∈ S. Then, by Theorem 3.8,

Jx is ideal. As S is simple, we have Jx = S. Since y ∈ Jx, we have T+
A (y) ≥ T+

A (x),
I+A (y) ≤ I+A (x), F+

A (y) ≥ F+
A (x), T−

A (y) ≤ T−
A (x), I−A (y) ≥ I−A (x), F−

A (y) ≤ F−
A (x).

So, T+
A (y) = T+

A (x), I+A (y) = I+A (x), F
+
A (y) = F+

A (x), T−
A (y) = T−

A (x), I−A (y) = I−A (x),
F−
A (y) = F−

A (x). Hence, S = (S+, S−) is an NBF simple. �
Lemma 3.3. A semigroup S is simple if and only if S = SaS for all a ∈ S.

Theorem 3.10. For any semigroup S, S is simple if and only if all the NBF interior
ideals of S are constant functions.

Proof: Suppose x, y ∈ S and S are simple. Let A = (A+, A−) be an NBF ideal. Then,
by Lemma 3.3, we get S = SxS = SyS. Since x ∈ SxS, we get x = tys for t, s ∈ S.
Since A = (A+, A−) is an NBF interior ideal, we have T+

A (x) ≥ T+
A (tys) ≥ T+

A (y),
I+A (x) ≤ I+A (tys) ≤ I+A (y), F+

A (x) ≥ F+
A (tys) ≥ F+

A (y), T−
A (x) ≤ T−

A (tys) ≤ T−
A (y),

I−A (x) ≥ I−A (tys) ≥ I−A (y), F−
A (x) ≤ F−

A (tys) ≤ F−
A (y). Similarly, we can prove that

T+
A (y) ≥ T+

A (x), I+A (y) ≤ I+A (x), F+
A (y) ≥ F+

A (x), T−
A (y) ≤ T−

A (x), I−A (y) ≥ I−A (x),
F−
A (y) ≤ F−

A (x). So, A = (A+, A−) is constant.
Conversely, suppose A = (A+, A−) is an NBF ideal of S. Then A = (A+, A−) is an

NBF interior ideal. By assumption, A = (A+, A−) is constant, and hence A = (A+, A−)
is an NBF simple. Therefore, S is simple, by Theorem 3.9. �
As a consequence, we have the following.

Theorem 3.11. For a semigroup S, the following is equivalent:

1. S is simple.
2. S = SaS for every a ∈ S.
3. S is an NBF simple.
4. For every NBF interior ideal of S, T+

A (xay) ≥ T+
A (a), I+A (xay) ≤ I+A (a), F

+
A (xay) ≥

F+
A (a), T−

A (xay) ≤ T−
A (a), I−A (xay) ≥ I−A (a), F

−
A (xay) ≤ F−

A (a) for all a, x, y ∈ S.

Theorem 3.12. Let S be a semigroup. If A = (A+, A−) is an NBF interior ideal with
µ1, µ2, µ3 ∈ [0, 1] and δ1, δ2, δ3 ∈ [−1, 0], 0 ≤ µ1 + µ2 + µ3 ≤ 3 and −3 ≤ δ1 + δ2 + δ3 ≤ 0,
then (µ1, µ2, µ3, δ1, δ2, δ3)-level set in A = (A+, A−) is an NBF interior ideal provided
C±

A (µ1, µ2, µ3, δ1, δ2, δ3) ̸= ∅.

Proof: Suppose C±
A (µ1, µ2, µ3, δ1, δ2, δ3) ̸= ∅ for µ1, µ2, µ3 ∈ [0, 1] and δ1, δ2, δ3 ∈

[−1, 0].
Let A = (A+, A−) be an NBF interior ideal of S and x, y ∈ S, a ∈ C±

A (µ1, µ2, µ3, δ1, δ2,
δ3). Then T+

A (xay) ≥ T+
A (a) ≥ µ1, I

+
A (xay) ≤ I+A (a) ≤ µ2, F

+
A (xay) ≥ F+

A (a) ≥ µ3,
T−
A (xay) ≤ T−

A (a) ≤ δ1, I
−
A (xay) ≥ I−A (a) ≥ δ2, and F−

A (xay) ≤ F−
A (a) ≤ δ3 which imply

xay ∈ C±
A (µ1, µ2, µ3, δ1, δ2, δ3).

Therefore, C±
A (µ1, µ2, µ3, δ1, δ2, δ3) is an NBF interior ideal in S. �

Theorem 3.13. Let S be a semigroup. C±
A (µ1, µ2, µ3, δ1, δ2, δ3) ̸= ∅ and A = (A+, A−) is

an NBF of S with µ1, µ2, µ3 ∈ [0, 1] and δ1, δ2, δ3 ∈ [−1, 0] such that 0 ≤ µ1 + µ2 + µ3 ≤ 3

and −3 ≤ δ1+δ2+δ3 ≤ 0. If
(
T+
A

)µ1,
(
I+A

)µ2,
(
F+
A

)µ3,
(
T−
A

)δ1, (I−A )δ2, (F−
A

)δ3 are interior
ideals on S, then A = (A+, A−) is an NBF interior ideal on S whenever

(
T+
A

)µ1 ̸= ∅,(
I+A

)µ2 ̸= ∅,
(
F+
A

)µ3 ̸= ∅,
(
T−
A

)δ1 ̸= ∅,
(
I−A

)δ2 ̸= ∅,
(
F−
A

)δ3 ̸= ∅.



ICIC EXPRESS LETTERS, VOL.18, NO.4, 2024 351

Proof: Suppose that, for x, y, a ∈ S with
(
T+
A

)µ1(xay) ≤
(
T+
A

)µ1(a). Then
(
T+
A

)µ1(xay)

≤ µ1 ≤
(
T+
A

)µ1 (a) for some µ1 ∈ [0, 1]. So, a ∈
(
T+
A

)µ1 , but xay /∈
(
T+
A

)µ1 is a contradic-

tion. Thus,
(
T+
A

)µ1 (xay) ≥
(
T+
A

)µ1 (a).

Suppose that, for x, y, a ∈ S with
(
I+A

)µ2 (xay) ≥
(
I+A

)µ2 (a). Then
(
I+A

)µ2 (xay) ≥
µ2 ≥

(
I+A

)µ2 (a) for some µ2 ∈ [0, 1]. So, a ∈
(
I+A

)µ2 , but xay /∈
(
I+A

)µ2 is a contradiction.

Thus,
(
I+A

)µ2 (xay) ≤
(
I+A

)µ2 (a).

Suppose that, for x, y, a ∈ S with
(
F+
A

)µ3 (xay) ≤
(
F+
A

)µ3 (a). Then
(
F+
A

)µ3 (xay) ≤
µ3 ≤

(
F+
A

)µ3 (a) for some µ3 ∈ [0, 1]. So, a ∈
(
F+
A

)µ3 , but xay /∈
(
F+
A

)µ3 is a contradiction.

Thus,
(
F+
A

)µ3 (xay) ≥
(
F+
A

)µ3 (a).

Suppose that, for x, y, a ∈ S with
(
T−
A

)δ1 (xay) ≥ (
T−
A

)δ1 (a). Then (
T−
A

)δ1 (xay) ≥ δ1 ≥(
T−
A

)δ1 (a) for some δ1 ∈ [−1, 0]. So, a ∈
(
T−
A

)δ1 , but xay /∈
(
T−
A

)δ1 is a contradiction.

Thus,
(
T−
A

)δ1 (xay) ≤ (
T−
A

)δ1 (a).
Suppose that, for x, y, a ∈ S with

(
I−A

)δ2 (xay) ≤ (
I−A

)δ2 (a). Then (
I−A

)δ2 (xay) ≤ δ2 ≤(
I−A

)δ2 (a) for some δ2 ∈ [−1, 0]. So, a ∈
(
I−A

)δ2 , but xay /∈
(
I−A

)δ2 is a contradiction.

Thus,
(
I−A

)δ2 (xay) ≥ (
I−A

)δ2 (a).
Suppose that, for x, y, a ∈ S with

(
F−
A

)δ3 (xay) ≥
(
F−
A

)δ3 (a). Then (
F−
A

)δ3 (xay) ≥
δ3 ≥

(
F−
A

)δ3 (a) for some δ3 ∈ [−1, 0]. So, a ∈
(
F−
A

)δ3 , but xay /∈
(
F−
A

)δ3 is a contradic-

tion. Thus,
(
F−
A

)δ3 (xay) ≤ (
F−
A

)δ3 (a).
Hence, A = (A+, A−) is an NBF interior ideal of S. �

4. Conclusion. This paper has presented the concept of a neutrosophic bipolar-valued
fuzzy subsemigroup and its basic operations. The concepts of the neutrosophic bipolar-
valued fuzzy left (right, interior) ideal has been discussed and shown to coincide with
regular and intra-regular semigroups. Furthermore, the idea of a neutrosophic bipolar-
valued fuzzy simple has been introduced. It has been proved that a semigroup is con-
sidered simple if and only if it is neutrosophic bipolar-valued fuzzy simple. Further, we
extend to fuzzy bi-interior ideals, fuzzy almost ideals, and algebraic systems. The study
of neutrosophic bipolar-valued fuzzy sets in semigroup theory opens up a new area of
research and paves the way for further investigation in this field.
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