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Abstract. In this paper, we examine a design method of a control system using double
feedback control for the Single-Input/Single-Output minimum phase systems with vary-
ing number of unstable poles and having an uncertain relative degree. Several researchers
studied a robust stabilization problem. According to several studies, it is a difficult prob-
lem that for the large uncertainty, the control system has a robust stability and low sen-
sitivity. However, Yamada clarifies a necessary and sufficient condition of the control
system that low-sensitivity control makes the system robustly stable for the certain class
of uncertainty. Yu et al. expand the result of Yamada and propose a design method of
a control system using double feedback control. According to Yu et al., since the double
feedback control system has a sensitivity characteristics and robust stability, it is suitable
to design the control system with low sensitivity and robust stability. The purpose of this
paper is to expand the result of Yu et al., and propose a design method of the double
feedback control system for a class of uncertainties not considered by Yu et al., which is
the set of systems that the number of relative degrees of the nominal plant is not equal
to that of the real plant.
Keywords: Single-Input/Single-Output minimum phase systems, The systems with
varying number of unstable, Robust stabilization problem, Low sensitivity control, Ro-
bust control, Uncertain relative degree

1. Introduction. In this paper, we examine a design method of a control system us-
ing double feedback control for the Single-Input/Single-Output (SISO) minimum phase
systems with varying number of unstable poles and having an uncertain relative degree.
Several researchers study about a robust stabilization problem [1-7]. Doyle and Stein build
the basis for this problem, and show the conditions for the multiplicative uncertainty and
additive uncertainty [1]. Chen and Desoer gave the complete proof of the result of [2].
Kimura considers the robust stabilizability problem for Single-Input/Single-Output sys-
tems [8]. Vidyasagar and Kimura expand the findings of Kimura [8] for multiple-input
and multiple-output systems [9].

According to [1-3], in order to keep the stability for the large uncertainty, a comple-
mentary sensitivity function of the control system must be small value. This means to
bring the control systems low parformances in terms of the low sensitivity characteristics
such as disturbance attenuation. On the other hand, to produce the control system with
disturbance attenuation, we must make a sensitivity function of the control system small.
Since the sum of the complementary sensitivity function and the sensitivity function is
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equal to 1, it is well-known to be difficult that on the design of control system, both low
sensitivity characteristics and robust stability are obtained.
However, the control system with low sensitivity characteristics is not always made

to be unstable. Maeda and Vidyasagar consider this problem as an infinite gain margin
one [10, 11]. Nogami et al. clarify the condition that hi-gain controller does not make
the system unstable, and proposed a design method [12]. Doyle et al. consider this low-
sensitivity control problem from another viewpoint; there exists a class of uncertainty
that has the property to make the control system with low sensitivity characteristics
robustly stabile, and provide a necessary and sufficient condition to make the control
system robustly stable for its class of uncertainty [13]. Thus, for the uncertainty described
in [13], we can construct the control system with low sensitivity and robust stability.
In this meaning, the uncertainty described in [13] is suitable for designing the high-
performance robust control system. The uncertainty described in [13] cannot be applied to
a system with varying number of poles in an open right half plane. There exist applications
of a system with varying number of poles in the open right half plane such that the number
of poles in the open right half plane changes. For example, the number of poles in the
open right half plane of a large flexible spacecraft changes when the configuration of the
spacecraft is changed [9]. The problem to obtain the robust stability condition for the
system with varying number of poles in the closed right half plane is difficult because the
problem does not reduce to the small gain theorem. Yamada considers this problem, and
obtains the robust stability condition for the system with varying number of poles in the
open right half plane [14].
To give a low-sensitivity characteristic to the control system, it is important to con-

sider a control structure of the control system. Morari and Zafiriou propose the Internal
Model Control (IMC) structure [15]. The IMC structure is a structure that the controller
has a model of the plant, which is called the nominal plant inside. According to [15-17],
the IMC structure can give the control system a low sensitivity characteristiics by using
the feedback of an error between the output of a model of the plant, which is called the
nominal plant, and that of the plant. However, the IMC structure has a problem that for
a plant with an unstable system, the IMC structure does not provide a high performance
characteristic such as disturbance attenuation [15-19]. This problem is caused by the rea-
son that if the plant is unstable, any reference input will make the output grow without
bound, since the inverse system has an unstable zero [16]. To overcome this problem, sev-
eral researchers propose several design methods of IMC structure [18-21]. Kaya proposes
a two-degree-of-freedom IMC structures by using the two-degree-of-freedom control [19].
The two-degree-of-freedom IMC structure is provided to eliminate the aforementioned
shortcomings of the original IMC structure, since single controller is split into two con-
trollers for set-point tracking and disturbance attenuation. Zhou and Ren overcome the
problem of IMC structure and propose a new structure named Generalized Internal Model
Control (GIMC) structure [21]. There exist several applications of the GIMC structure
[22-27]: suspension systems [23, 24, 27]; active actuators [25]; automotive electric power
steering system [26, 27] and so on. Okajima et al. propose a model error compensator
control structure [28-30]. Model error compensator control structure is a control structure
that the output trajectory of the nominal plant can be made close to that of the model.
The model error compensator control structure is applied to several control such as an
indoor platoon driving system of welfare personal vehicles [31]. On the other hand, Yu
et al. expand the result of [14] and propose a design method of a control system using
double feedback control [32]. The control system using double feedback structure, which is
called the double feedback control system, has a structure that the two-degree-of-freedom
control system is included in the two-degree-of-freedom control system. According to [32],
the double feedback control system can have the robust stability and the low sensitivity
characteristic in the meaning of reducing influence of uncertainty to the output by using
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the result of [14]. The low sensitivity characteristic of the double feedback control system
is better than that of a original two-degree-of-freedom control system. This design method
proposed by Yu et al. is suitable to design a high performance robust control system in
the meaning of the disturbance attenuation and reducing the influence of uncertainty to
the output for the system with varying number of unstable poles. However, the design
method of [32] cannot be applied to the system having an uncertain relative degree. Ac-
cording to [33, 34], several plants having an uncertain relative degree exist. Thus, in order
to design a control system with robust stability and low sensitivity for the plant having
an uncertainty relative degree, it is important to clarify a condition to make the double
feedback control system robustly stable for its plant, and propose a design method of its
control system.

According to [35], it is clarified a robust stability condition that for the plant with
varying number of poles in the closed right half plane having uncertain relative degree,
the low sensitivity control guarantees robust stability. By expanding the result of [35],
we can obtain a design method of a control system by using double feedback control for
systems with varying number of poles in the closed right half plane having uncertain
relative degree.

In this paper, we examine a design method of a control system using double feedback
control for the SISO minimum phase systems with varing number of unstable poles and
having an uncertain relative degree. The purpose of this paper is summarized as follows:
1) we clarify a condition that the control system by the double feedback is robustly stable
for the plant with varing number of unstable poles and having an uncertain relative degree;
2) we propose a design method of a control system by using double feedback. This paper
is organized as follows. In Section 2, we describe the preliminary results and problem in
this paper. That is, we explain the double feedback control system by comparing the two-
degree-of-freedom control system. In Section 3, the robust stability condition of the double
feedback control system is clarified. In Section 4, we examine a sensitivity characteristic
of double feedback control system. In Section 5, we present a design method for double
feedback control system with low-sensitivity and robust stability. Section 6 gives some
concluding remarks.

Notations.
R the set of real numbers.

R+e R ∪ {∞}.
| · | absolute value of ·.
R(s) the set of real relational functions with s.

RH∞ the set of stable proper real relational functions.

∥ · ∥∞ H∞ norm of ·.

2. Preliminary Result and Problem Formulation. In this section, we explain the
preliminary results of the two-degree-of-freedom control system and the problem consid-
ered in this paper.

Consider the two-degree-of-freedom control system shown in Figure 1. Here, G(s) ∈
R(s) is strictly proper and a SISO minimum phase plant, C1(s) ∈ R(s) and F1(s) ∈ RH∞
are controllers, r(s) ∈ R(s) is an input and y(s) ∈ R(s) is an output.

The nominal plant of G(s) denotes F0(s) ∈ R(s), in which F0(s) is proper and of
minimum-phase. The relationship between G(s) and F0(s) is written by the form in

G(s) = F0(s)(1 + ∆(s)), (1)

where ∆(s) is the uncertainty, and assume that the relative degree of F0(s) is not always
equal to that of G(s).
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G(s)C1(s)F1(s)

F0(s)
F1(s)

r(s) y(s)e1(s)

Figure 1. The two-degree-of-freedom control system

The transfer function of the two-degree-of-freedom control system in Figure 1 from r(s)
to y(s) is written as

y(s) = F1(s) (1 +H1(s)) r(s), (2)

where H1(s) ∈ R(s) is written by

H1(s) =

1
1+C1(s)F0(s)

∆(s)
1+∆(s)

1− 1
1+C1(s)F0(s)

∆(s)
1+∆(s)

. (3)

The two-degree-of-freedom control system in Figure 1 reduces an influence of ∆(s) to y(s)
if the gain of H1(s) is made to be small. From (2) and (3), in order to have H1(s) small
value, it is needed to make a function S1(s) denoted by

S1(s) =
1

1 + C1(s)F0(s)
(4)

small value.
To design the control system with low sensitivity and robust stability for the uncertainty

with varying number of poles in the closed right half plane having uncertain relative
degree, we adopt the class of uncertainty ∆(s) given by the following definition.

Definition 2.1. [35] G(s) is called the elementary of the set Ω if following expressions
hold.

• The number of zeros of G(s) in the closed right half plane is equal to that of F0(s).
•

0 ≤ ρ(G(s))− ρ(F0(s)) ≤ 2 (5)

holds true, where ρ(G(s)) is the relative degrees of G(s) and ρ(F0(s)) is that of F0(s).
• ∆(s) satisfies ∣∣∣∣ ∆(jω)

1 + ∆(jω)

∣∣∣∣ ≤ |W (jω)| (∀ω ∈ R+e), (6)

where W (s) ∈ R(s) is an upper bound of ∆(s) satisfying

lim
ω→∞

W (jω) = 1. (7)

• G(s) and F0(s) are of minimum phase.

When G(s) is the element of the set Ω, we denote ∆(s) ∈ Ω.

According to [35], for ∆(s) ∈ Ω, we can construct the control system in Figure 1 with
robust stability and low sensitivity. A necessary and sufficient condition of the control
system in Figure 1 with robust stability and low sensitivity characteristics is summarized
as follows.

Theorem 2.1. [35] Assume that C1(s) stabilizes the nominal plant F0(s), 0 ≤ ρ(G(s))−
ρ(F0(s)) < 2 and F1(s)/F0(s) ∈ RH∞. The two-degree-of-freedom control system in Figure
1 is robustly stable for ∆(s) ∈ Ω if and only if
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∥S1(s)W (s)∥∞ < 1 (8)

holds.

To prove Theorem 2.1, necessary lemmas are shown.

Lemma 2.1. [35] It is assumed that Gm(s) has a q-th number of zero in the closed right
half plane and a pm-th number of pole in the closed right half plane, and G(s) has a q-th
number of zero in the closed right half plane and p-th number of pole in the closed right
half plane, the relative degree of G(s) is equal to that of Gm(s). The Nyquist plots of
1 + ∆(jω) = G(jω)/Gm(jω) for −∞ ≤ ω ≤ ∞ encircle the origin (0, 0) p− pm times in
the counter-clockwise direction.

Proof: The proof is obvious from Lemma 1 in [35]. �
Lemma 2.2. [35] It is assumed that W (s) satisfies (7) and (5), Gm(s) has q-th number
of zero in the closed right half plane and pm-th number of pole in the closed right half
plant, and G(s) has q-th number of zero in the closed right half plane and p-th number of
pole in the closed right half plane. The Nyquist plot of 1+∆(jω) for −∞ ≤ ω∞ encircles
the origin (0, 0) p− pm times in the counter-clockwise direction.

Proof: The proof is obvious from Lemma 2 in [35]. �
The proof of Theorem 2.1 is shown by using above lemmas.
Proof: The proof is obvious from Theorem 2 in [35]. �
Theorem 2.1 is summarized as follows.

• In order to design the control system with robust stability and low sensitivity, the
controller C1(s) needs to minimize ∥S1(s)W (s)∥∞, at worst C1(s) must satisfy

∥S1(s)W (s)∥∞ < 1.

• The control system in Figure 1 to satisfy Theorem 2.1 is robustly stable for the plant
included in the set Ω.

In order to make the control system have lower sensitivity characteristic than two-
degree-of-freedom control system, Yu et al. propose the double feedback control system
shown in Figure 2 [32]. Here, F2(s) ∈ RH∞ and C2(s) ∈ R(s) are controller, and C2(s)
stabilizes F1(s). According to [15], since C2(s) stabilizes F1(s) ∈ RH∞, the parameteri-
zation of all stabilizing controller C2(s) is written by

C2(s) =
Q(s)

1−Q(s)F1(s)
, (9)

where Q(s) ∈ RH∞ is any function. The double feedback control strucutre is a structure
that the two-degree-of-freedom control system surrounded by dotted line in Figure 2 is
included in the two-degree-of-freedom control.

According to [32], the double feedback control system in Figure 2 can attenuate the
influence of ∆(s) to y(s) less than that of the two-degree-of-freedom control system in
Figure 1. The transfer function from r(s) to y(s) in Figure 2 is given by

y(s) = F2(s) (1 +H2(s)) r(s), (10)

where H2(s) ∈ R(s) is written by

H2(s) =

1
1+C2(s)F1(s)

1
1+C1(s)F0(s)

∆(s)
1+∆(s)

1− 1
1+C2(s)F1(s)

1
1+C1(s)F0(s)

∆(s)
1+∆(s)

=
S1(s)S2(s)

∆(s)
1+∆(s)

1− S1(s)S2(s)
∆(s)

1+∆(s)

(11)

and

S2(s) =
1

1 + C2(s)F1(s)
. (12)
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The double feedback control system in Figure 2 can attenuate the influence of ∆(s) to
y(s) by making gain of H2(s) small value. In order to have the gain of H2(s) small value,
it is needed to make a function S1(s)S2(s) be small.

F2(s) C2(s)

F1(s)

F2(s)

r(s) e2(s)

C1(s)F1(s)

F0(s)
F1(s)

G(s)
y(s)

Figure 2. The double feedback control system

In this paper, we consider two problems as follows.

1) The first problem is to clarify a robust stability condition of the double feedback control
system for ∆(s) ∈ Ω that low sensitivity control in the meaning of attenuating influence
of ∆(s) to y(s), which makes H2(s) small value, guarantees the robust stability.

2) The second problem is to examine a design method for the low sensitivity control of
the double feedback control system in Figure 2.

3. The Robust Stability Condition of the Double Feedback Control System.
In this section, we clarify the robust stability condition of double feedback control system
in Figure 2.
The robust stability condition is summarized in Theorem 3.1.

Theorem 3.1. Assume that Ci(s) (i = 1, 2) stabilizes Fi−1(s), 0 ≤ α = ρ(G(s)) −
ρ(F0(s)) < 2 and Fi(s)/Fi−1(s) ∈ RH∞. The double feedback control system in Figure 2
is robustly stable for ∆(s) ∈ Ω if and only if

∥S1(s)S2(s)W (s)∥∞ < 1 (13)

holds true.

The proof of Theorem 3.1 is shown by using Lemma 2.1 and Lemma 2.2.
Proof: Let a characteristics polynomial of the double feedback control system in Figure

2 be

1 +

{
F1(s)

F0(s)
C2(s) (1 + C1(s)F0(s)) + C1(s)

}
G(s). (14)

Proof is immediately obtained by applying Theorem 2 in [35] to

1 +

{
F1(s)

F0(s)
C2(s) (1 + C1(s)F0(s)) + C1(s)

}
G(s)

= (1 + C1(s)F0(s))(1 + C2(s)F1(s)) {1− S1(s)S2(s)} . (15)

We have the complete proof of this theorem. �
Theorem 3.1 is summarized as follows.

• In order to design the control system with robust stability and low sensitivity, the
controllers C1(s), F1(s) and C2(s) need to minimize ∥S1(s)S2(s)W (s)∥∞, at worst
C1(s) must satisfy

∥S1(s)S2(s)W (s)∥∞ < 1.

• It is not only related with C1(s) but also C2(s) to minimize ∥S1(s)S2(s)W (s)∥.
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• The control system in Figure 2 to satisfy Theorem 3.1 is robustly stable for the plant
included in the set Ω.

4. Sensitivity Characteristic of Double Feedback Control System. In this sec-
tion, we examine a sensitivity characteristic of double feedback control system in Figure
2.

According to [32], by comparing between the gain of H2(s) and that of H1(s), we can
know whether or not the low sensitivity characteristics of the double feedback control
system outperform that of the two-degree-of-freedom control system in Figure 1. Since
H1(s) and H2(s) depend on F1(s) and F2(s), in order to compare characteristics of H1(s)
and H2(s), we settle F1(s) = F2(s). If |H2(jω)/H1(jω)| ≤ 1, then the double feedback
control system in Figure 2 has low sensitivity characteristics more than the two-degree-
of-freedom control system in Figure 1, in the meaning of reducing the influence of ∆(s)
to y(s). From (3) and (11), H2(s)/H1(s) is written as

H2(s)

H1(s)
= 1−K(s), (16)

where

K(s) =
1− S2(s)

1− S1(s)S2(s)
∆(s)

1+∆(s)

. (17)

From (17), if

1− S2(jω) ≃ 0, (18)

H2(jω)/H1(jω) is close to 0. In addition, if

1− S2(jω1) ≃ 1, (19)

H2(jω)/H1(jω) is close to 1. From above discussion, on the frequency range making S2(s)
small value, the double feedback control system in Figure 2 can achieve low sensitivity
characteristics more than the two-degree-of-freedom control system in Figure 1.

5. A Design Method for Double Feedback Control System. In this section, we
present a design method for double feedback control system with low-sensitivity and
robust stability.

It is assumed that C1(s) is settled using appropriate methods. From (9), since F1(s) is
of minimum-phase and stable, Q(s) is settled as

Q(s) =
1

F1(s)
Q̂(s), (20)

where Q̂(s) ∈ RH∞ is

Q̂(s) =
1

(1 + τqs)αq
, (21)

where τq ∈ R is an arbitrary positive real number, which satisfies Q̂(jω) ≃ 0 in the wide

frequency range, and αq is an arbitrary positive integer which makes Q̂(s) proper.
From (12), (9), and (21), since S2(s) in (12) can be rewritten by

S2(s) = 1− Q̂(s), (22)

S2(s) satisfies (18) in the wide frequency range.

6. Conclusion. In this paper, we have examined the design method for double feedback
control system for the SISO minimum phase systems with varying number of unsta-
ble poles and uncertain relative degrees. We have shown the robust stability condition of
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the double feedback control system for the SISO minimum phase systems with varying
number of unstable poles and uncertain relative degrees. In addition, we have presented
a design method of the double feedback control system with robust stability and low
sensitivity. However, we do not consider a design method of a control system by using
double feedback control with robust stability and low sensitivity for SISO non-minimum
phase system with varying number of unstable poles having uncertain relative degree.
It is well-known that it is difficult to design a control system with low sensitivity for a
non-minimum phase system. In addition, we do not consider an application by using a
result of this paper. These will be considered in another papers as future work.
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