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Introduction
Hereditary haemochromatosis (HH) is a disorder 

characterised by increase of serum iron parameters 
and gradual iron accumulation in parenchymal organs. 
Since the discovery of the genetic defects of the most 
common form of hereditary haemochromatosis (type 
1 haemochromatosis [HFE]), many observations have 
shown that not only rare/familial mutations in HFE 
can be present but also that mutations in other genes 
(transferrin receptor 2 [TFR2], hepcidin [HAMP], 
hemojuvelin [HJV], and ferroportin [SLC40A1]) can 
lead to rarer genetic forms of iron overload, referred as 
non-HFE haemochromatosis1. The genetic heterogeneity 
is particularly evident in the Italian population where 
only two-thirds of haemochromatosis patients are 
HFE C282Y homozygotes2, requiring expensive and 
time-consuming gene specific genotyping to define the 
molecular diagnosis. Therefore, "second level" genetic 
tests should be developed for a rapid and simultaneous 
study of the haemochromatosis genes.

The most common non-HFE haemochromatosis is the 
autosomal dominant haemochromatosis type 4 (HH4), 
caused by mutations in the SLC40A1 gene, encoding 
for cellular iron exporter ferroportin. Ferroportin 
acts as receptor of hepcidin, the key regulator of iron 
metabolism. The hepcidin/ferroportin interaction 
induces the internalisation of the complex, causing a 
decrease in iron export and its retention in the cell3. 
HH4 can be phenotypically classified in two groups: 
patients may have hyperferritinaemia with normal/low 
transferrin saturation (type-A HH4, ferroportin disease) 
or both serum iron parameters increased (type-B HH4, 
non-classical ferroportin disease)4. This depends on 
ferroportin impairment that could be classified as 
"loss-of-function" or "gain-of-function". In the first 
case (type-A), the mutated protein is not expressed on 
the membrane and it is not able to exert its exporting 
function. In the second case (type-B), the mutated iron 
exporter becomes resistant to the activity of hepcidin, 
causing increased iron absorption. Several mutations 
have been characterised in HH4 patients, spreading 

along the entire gene sequence4. The position of the 
correspondent amino acidic change is important to 
define the HH4 clinical phenotype5.

Among the different ferroportin mutations, the 
p.A69T variant, despite the causal nucleotide change 
not being annotated in dbSNP, has been described in 
a 52-year old Italian woman with diabetes and type-B 
HH4, on the basis of hepatocyte iron overload6, but no 
iron parameters or clinical history of the patient were 
described. The pathogenic role of this mutation has been 
subsequently confirmed through in vitro experiments in 
which mutant cDNA has been over-expressed7. These 
studies demonstrated that p.A69T mutated ferroportin 
has a partial resistance to hepcidin.

Here we report an Italian patient with a severe 
iron overload phenotype in whom a careful clinical 
characterisation led to a diagnose of p.A69T non-
classical ferroportin disease through the combination of 
capture of technology with a next generation sequencing 
(NGS) platform.

Case report and results
In April 2012, a 47-year old man came to the 

attention of the Department of Transfusion Medicine 
in Turin for hepatopathy of unknown origin with 
biochemical signs of iron overload. There was a familial 
history of chronic liver disease since the father had died 
of cirrhosis of unknown origin. The patient had severe 
hyperferritinaemia (6,242 ng/mL), elevated transferrin 
saturation (95.4%), elevated transaminase levels, 
increased liver echogenicity mimicking "steatosis" with 
signs of progression to liver fibrosis at elastography 
evaluation (9 kPa, F2 Metavir Scale), splenomegaly 
and arthritis. Red blood cell (RBC) indices were 
normal (RBC 5.12 million/μL, haemoglobin [Hb] 144 
g/L, mean cell volume [MCV] 87 fL). Viral hepatitis 
and inflammatory diseases were excluded. There 
was no endocrine or cardiac dysfunction. DNA from 
mononuclear peripheral blood cells was prepared by 
standard protocols and a reverse hybridisation assay 
(Haemochromatosis StripAssay, Nuclear Laser, Settala, 
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Milan, Italy) was used for the simultaneous detection of 
10 HFE gene mutations (V53M, V59M, H63D, H63H, 
S65C, E168X, E168Q, W169X, C282Y, Q283P), 3 TFR2 
mutations (Y250X, E60X, M172K) and 2 SLC40A1/
ferroportin mutations (N144H, V162del). This first level 
genetic test showed that the patient was heterozygous 
for the HFE p.H63D polymorphism. 

A weekly phlebotomy treatment was started and 
well tolerated; no decrease in Hb was seen. After nine 
months, despite a 12-week combined chelation therapy 
with deferoxamine, ferritin levels were persistently high 
(6,519 ng/mL). To accelerate iron depletion, phlebotomies 
were replaced by erythroapheresis. One month later, 
ferritin had decreased (3,431 ng/mL) and serum hepcidin 
(Hep-25), measured by SELDI-TOF-MS8, was 10.2 nM 
(normal range 7.02-10.05)9. In the following 16 months, 
ferritin and transaminases levels gradually decreased. 
Overall, 21 g of iron were removed before iron depletion. 
Subsequently, monthly phlebotomies were planned as 
maintenance therapy (Figure 1). During maintenance 
therapy (ferritin 94 ng/mL) serum hepcidin was lower 
than normal (0.55 nM).

Due to the genetically unexplained haemochromatosis 
phenotype, a second level genetic test10 was performed 
by combining capture of the five HH genes (HFE, 
HJV, TFR2, SLC40A1/ferroportin, and HAMP/
hepcidin) through HaloPlexTM Technology (Agilent 
Technologies, Santa Clara, CA, USA) and sequencing 
by the IlluminaHiSeq 1000 platform (Illumina, San 
Diego, CA, USA). Sequence reads were aligned against 
human reference HG19, and analysed by GoldenHelix™ 

software to detect all the possible pathogenetic variants. In 
addition to the known heterozygote HFE p.H63D variant, 
a C>T change in exon 3 of the ferroportin/SLC40A1 gene 
at position 190439953 of chromosome 2 (GRCh37/HG19) 
was identified, leading to the substitution of threonine for 
alanine at position 69 (p.A69T). The presence of the 
p.A69T mutation was confirmed by direct sequencing of 
an amplicon in ferroportin exon 3 using ABI Prism 3130 xl 
Genetic Analyzer (Applied Biosystem) with the following 
primers (Fpn1F: 5'CTTCCTGAGTACAATAGACTAG3', 
Fpn1R: 5'CAGAGGTAGCTCAGGCAT3'). GOR IV 
Secondary Structure prediction server (http://mig.jouy.
inra.fr) was used to predict in silico whether the amino 
acid change would interfere with ferroportin structure; 
this showed that the substitution causes profound 
modifications in protein structure (Figure 2A). The 
mutation was not found in the probands' mother or 
sister (Figure 2B) (normal iron parameters and slightly 
decreased serum Hep-25).

Discussion
A total of five haemochromatosis genes and several 

different mutations, some of which can be very rare or 
even private familial variants, have been characterised 
since the discovery of HFE1. Therefore, genetic 
diagnosis can be difficult and a traditional approach 
based on single mutation detection and sequencing of 
candidate genes can prove unsuccessful or expensive 
and time consuming, especially in populations in which 
inherited iron overload disorders are not genetically 
homogeneous2.

Figure 1 - Decline of ferritin concentration during the iron removal treatments. 
 Phlebotomy was carried out by removing approximately 400 mL of blood. Asterisks indicate the 

serum Hepc dosage points (*Hep25=10.2 nM; **Hep25=0.55 nM).
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Rare mutation in an atypical ferroportin disease

Large-scale analysis based on massively parallel 
DNA-sequencing systems has recently overcome 
this problem. Moreover, hybridisation-based capture 
and PCR-based amplification of targeted sequence 
followed by NGS allows only the genomic regions 
of interest to be studied, making genetic analysis 
cost-effective. This approach has been successfully 
used to identify causal mutations in many Mendelian 
and complex neurological conditions11, in primary 
immunodeficiencies12, and to screen for recurrently 
mutated genes in chronic lymphocytic leukaemia13. 
Moreover, NGS approaches have been recently 
advocated to identify rare haemochromatosis variants 
when iron overload is well documented and initial 
screening approaches are negative14.

In this study, we performed a HaloPlex™ capture 
with NGS platform analysis to simultaneously screen 
5 haemochromatosis genes in a patient with a clear 
haemochromatosis phenotype (on the basis of age of 

onset, high serum ferritin, high transferrin saturation 
and hepatopathy) but without genetic diagnosis. This 
approach allowed identification of a rare mutation 
(p.A69T) in the ferroportin gene that had led to a type 
B HH4, non-classical ferroportin disease. The patient's 
phenotype is in accordance with the "gain-of-function" 
of p.A69T mutant ferroportin, recently described as 
partially resistant to hepcidin in vitro7. In agreement 
with this, and in contrast with the most types of 
haemochromatosis, no hepcidin deficiency was seen 
in our iron-overloaded patient (despite the fact that 
phlebotomy/erythroapheresis treatment was ongoing). 
Few studies have assessed the serum hepcidin level in 
haemochromatosis due to ferroportin mutations. Two 
reports have shown that patients carrying ferroportin 
variants (either abolishing hepcidin binding to 
ferroportin15 or leading to classical ferroportin disease16) 
have high serum hepcidin. These and our data confirm 
that the cause for HH4 is not a hepcidin deficiency as 

Figure 2 - Molecular results in study patients and relatives. 
 (A) Secondary structure prediction of p.A69T mutated ferroportin protein according to GOR IV server 

(http://mig.jouy.inra.fr). Double-headed arrow indicates the loss of an alpha-helix motif. Percentages of 
main amino acidic motifs are reported on the right; altered values in mutated protein are highlighted in red. 
(B) (Left) Genealogical tree of patient (II-1). (Right) Electrophoretograms of patient's antisense sequence, 
encompassing the C>T genomic mutation (indicated by an arrow), and of the 2 available relatives.
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in other types of haemochromatosis (related to HFE17, 
TFR218 or HJV19 mutations), but the lack of functional 
ferroportin. However, once an iron depletion state 
was achieved and a monthly phlebotomy maintenance 
treatment started, hepcidin concentration decreased, 
as already demonstrated in other haemochromatosis 
types20. This might be related to a regulatory effect by 
depleted iron stores and/or by stimulated erythropoiesis 
in response to long-term phlebotomy treatment.

In conclusion, we provide a clear description of the 
iron overload phenotype, including serum hepcidin 
monitoring, of a patient with a rare ferroportin mutation. 
Our study also demonstrates that, after careful clinical 
characterisation, NGS of targeted capture may be 
a useful approach for variant detection in cases of 
haemochromatosis. This could represent a good option 
for second level genetic testing in referral centres.
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