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объединяющем разработку, транспортирование и 

укладку грунта.  
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DETERMINATION OF STRESS STATE FOR A LAYER WITH A LONGITUDINAL CYLINDRICAL 

THICK-WALLED TUBE UNDER GIVEN MIXED CONDITIONS ON BOUNDARY SURFACES 

 

A substantially spatial problem of elasticity theory for a layer with a longitudinal circular cylindrical tube 

solved in it is solved. The layer and tube are rigidly fixed together. It is necessary to study the stress-strain state 

of the elastic bodies of both the layer and tube. 

On the lower boundary of the layer, displacements are given; on the upper boundary of the layer and the 

inner surface of the tube, stresses; on the boundary of the layer and tube, conjugation conditions. The solution to 

the spatial problem of the theory of elasticity is obtained using the generalized Fourier method in relation to the 

system of Lamé's equations in the cylindrical coordinates associated with the tube, and the Cartesian coordinates 

associated with the boundaries of the layer. By satisfying both the boundary and conjugation conditions, we obtain 

infinite systems of linear algebraic equations that are solved by the truncation method. As a result, we obtain 

displacements and stresses at different points of both the elastic layer and elastic tube. 

A numerical analysis of the stress-strain state of the elastic body of the layer and tube is carried out. Graphs 

of the normal stresses on the inner and outer surfaces of the tube are presented.  

 

Keywords: thick-walled tube in the layer, Lame's equation, generalized Fourier method. 

 

Introduction 

When designing tunnels, underground facilities 

and protective screens, there is a need to determine the 

stress-strain state in such structures. To achieve this, it 

is necessary to have a calculation method that matches 

the calculation scheme and allows getting the result 

with the required accuracy. 

There are papers for the layer with a transverse cir-

cular cavity or inclusion [1 - 3]. However, the methods 

used in them can not be applied to the layer with a lon-

gitudinal cavity or inclusion. 

Papers [4-5] consider the stationary problems of 

wave diffraction for the layer with a longitudinal cylin-

drical cavity or inclusion, with the problems based both 

on the Fourier decomposition method and the image 

method. 

This paper uses an analytical-numerical approach, 

and is based on the generalized Fourier method [6]. On 

the basis of this method, also solved are the problems 

for a half-space with a cylindrical cavity or inclusion 

[9-11], as well as the one for a cylinder with cylindrical 

inclusions [12]. 

Formulation of the Problem 

In an elastic homogeneous layer, parallel to its 

boundaries, an infinite circular cylindrical thick-walled 

tube with an external radius R1 and an interior one R2 is 

located. 

The tube will be considered in the cylindrical co-

ordinate system (ρ, φ, z), and the layer, in the Cartesian 

coordinate system (x, y, z), which is equally oriented 

and associated with the system of coordinates of the 

tube. The upper boundary of the layer is located at the 

distance y = h, the lower one, at the distance y= h
~

 . 

It is necessary to find a solution to the Lamé equation 
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where j is Poisson's coefficient for the layer (j = 

1) or the tube (j = 2). 

On the lower boundary of the layer, the displace-

ments    zxUzxU
hhy ,, 0
~~

1


  are given; on 

the upper boundary of the layer, the stresses 

   zxUFzxUF
hhy ,, 0

1


 ; on the inner 
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surface of the tube, the stresses

   zFzUF RR ,, 0
2 2

 


; on the boundary 

of the tube and layer, the conjugation conditions 

   
11

,, 21 RR zUzU  


,   (1) 

   
11

,, 21 RR zUFzUF  


,  (2) 

where  





















 jjj

j

j
jj UnU

n
UnGUF


rot

2

1
div

21
2  is the stress op-

erator; σj, Gj, jU


 are the elastic constants and displacements of the layer (j = 1) or the tube (j = 2); 
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are known functions; 
   3,2,1, je k
j


 are the unit vectors of the Cartesian (k = 1) and cylindrical (k 

= 2) coordinate systems. 

All known vectors and functions will be considered as fast falling to zero at great distances from the origin 

of the coordinate z for the tube and the coordinates x and z for the boundaries of the layer. 

Solving the Problem  

Choose the basic solutions to the Lamé equation for the specified coordinate systems in form [6] 
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where  xIm ,  xKm  are the modified Bessel functions; mkmk SR ,, ,


, k=1, 2, 3 are, respectively, the 

internal and external solutions to the Lamé equation for the cylinder; 
   

kk uu


,  are the solutions to the Lamé 

equation for the layer. 

The solution to the problem will be presented in the form 
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where,   ;,,, zS mk


,   ;,,, zR mk
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 and 
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 are 

the basic solutions given by formulas (4), and the un-

known functions  ,kH ,  ,
~

kH , 

 mkB , ,  mkA ,  and  mkA ,

~
 must be found 

from boundary conditions (3) and conjugation condi-

tions (1) and (2). 

For the transition in basic solutions between coor-

dinate systems, we use the formulas [14]. 

To fulfill the boundary conditions at the bounda-

ries of the layer, we rewrite the basic solutions mk
S

,


 

in (5), using transition [14, formulas 7], in the Cartesian 

coordinate system through the basic solutions  
ku


 

(for y = h) and  
k

u


 (for y= h
~

 ). We equate the re-

sulting vectors, for y= h
~

 , to the given  zxU
h

,0
~


, 

and for y= h
~

 , we find the stresses and equate them 

to  zxFh ,0


. We give the vectors  zxU
h

,0
~


 and 

 zxFh ,0


 in advance through the double Fourier in-

tegrals. 

The resulting system of 6 equations has a determi-

nant 
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where  hhx
~

 , G is the shear modulus. 

The square brackets of this determinant coincide with 

known results [15]. 

From the obtained equations, we find the functions 

 ,kH  and  ,
~

kH  through  mkB ,
. 

To take into account conjugation conditions (1), 

we decompose, in (5), the basic solutions 
 
ku


 by 

means [14, formulas 8], turning them into the solutions

mkR ,


. We then equate ρ=R1 therein. This will fulfill 

condition (1). 

To take into account conjugation conditions (2), 

we find the vectors 1UF


 and 2UF


 from solutions 

(5) and (6), decompose the basic solutions 
 
ku


 therein 

by means of [14, formulas 8], turning them into the so-

lutions mkR ,


, and equate ρ = R1. This will fulfill con-

dition (2). 

These two conditions give 6 equations, conjugat-

ing all the unknowns in equations (5) and (6). 

To take into account the boundary conditions on 

the inner surface of the tube, we apply the stress opera-

tor to the right-hand side of (6), and equate (for ρ=R2) 

to the specified  zFR ,0 


 given by the integral and 

Fourier series. 

From the resulting system of equations, we ex-

clude the previously found functions  ,kH  and 

 ,
~

kH  through  mkB ,
. Having gotten rid of 

the series m and integrals , we obtain a collection of 

nine infinite systems of linear algebraic equations for 

identifying the unknowns  mkA , ,  mkA ,

~
 and 

 mkB ,
. 

For the obtained infinite systems of equations, we 

will apply the truncation method. The numerical studies 

show that the determinant of the truncated system does 

not turn into zero for any m, for 0m10, and, conse-

quently, this system of equations has a unique solution. 

Having solved this system of equations, we will 

find the unknowns,  mkA , ,  mkA ,

~
 and

 mkB ,
. 

We substitute the functions  mkB ,
 obtained 

from the infinite system of equations into the expres-

sions for  ,kH  and  ,
~

kH . This will de-

termine all unknown problems. 

Numerical Studies of the Stressed State 

A B30 grade concrete tube is located in a homo-

geneous isotropic clay layer in parallel with its surfaces. 

Layer: Poisson's coefficient 1 = 0.3, the elastic modu-

lus E1=10 kN / cm2. Tube: Poisson's coefficient 2 = 

0.16, the elastic modulus E2= 3250 kN / cm2. The outer 
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tube radius R1 = 70 cm, the internal one R2 = 60 cm. 

The layer thickness hh
~

 = 340 cm. The distance 

from the upper boundary of the layer to the tube center 

h = 170 cm. 

With the weight of the processing equipment taken 

into account, on the upper boundary of the layer, the 

stresses 

       2222228 101010,


 xzzxh
y

, 
    0 h

yz
h
yx  are given; on the lower boundary 

of the layer, the displacements 

      0
~~~

 UUU h
z

h
y

h
x   are given. On the in-

ner surface of the tube, there are no stresses 
      0 

p
z

pp
. 

A finite system of equations of order m = 8 was 

solved. The accuracy of the fulfillment of the boundary 

conditions for the indicated values of geometric param-

eters was equal to 10-4. 

Fig. 1 shows the normal stresses along the z axis 

at the upper point of the tube on the outer and inner sur-

faces. 

The greatest stresses are   (Fig. 1, line 2), 

which reach the maximum values at z = 0: on the outer 

surface of the tube, the compression   = -0.5 kN / 

cm2; on the inner surface of the tube, the tension 

= +0.564 kN / cm2. It should be noted that the stresses 

on the tube surface, along the z axis, fall very slowly 

(compared to the specified function at the boundary of 

the layer). 

 
a       b 

Fig. 1. Stresses on the surfaces of the tube along the z axis, at x = 0 (in kN / cm2): a − on the outer surface (y = 

+ R1); b − on the inner surface (y = + R2); 1 −  ; 2 −  ; 3 − z  

Fig. 2 shows the stresses on the tube surface (along the radii R1 and R2) in the plane z = 0. 

 

 
a       b 

Fig. 2. Stresses on the surface of the tube along the radii R1 and R2, at z = 0 (in kN / cm2): a − on the outer sur-

face; B − on the inner surface; 1 −  ; 2 −  ; 3 − z  

Along the radii, the stresses vary from compres-

sion to tension and vice versa. Thus, on the outer sur-

face of the tube (Fig. 2a) at the upper and lower points, 

there is compression, to the right and left, tension. At 

the inner surface of the tube (Fig. 2b), in the upper and 

lower points, there is tension, on the left and right, com-

pression. In addition, the stresses in absolute value on 

the inner surface of the tube are higher than on the outer 

one. 

Along the radius R1 in the elastic body of the layer, 

the stresses are very small (in comparison with those in 

the elastic body of the tube), which is the result of the 

difference in the layer and tube materials. 

Conclusions 
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On the basis of the generalized Fourier method, 

the problem for the layer with a longitudinal cylindrical 

thick-walled tube and different boundary conditions at 

the boundaries of the layer and tube is calculated. 

The proposed analytical-numerical calculation 

method allows us, with the given accuracy, to deter-

mine the stress-strain state of the elastic body, taking 

into account its infinite boundaries and conjugation 

conditions for the layer and tube. 

The numerical study of the stress-strain state of the 

concrete tube, which is in a layer of clay under the ac-

tion of loading on the surface of the layer, proves that 

the greatest stresses arise on its inner surface. In addi-

tion, in comparison with the given function, there is a 

very slow decrease in the stresses along the z axis. 

The numerical studies of the algebraic system 

make it possible to state that its solution can be found 

with any degree of accuracy by the method of reduc-

tion. This is confirmed by the high accuracy of the im-

plementation of boundary conditions. 
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