نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، صندوق پستی: 5166616422، تبریز ـ ایران

2 پژوهشکده‌ی کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 1498-31485، کرج- ایران

3 مرکز تحقیقات سلامت و محیط زیست، دانشگاه علوم پزشکی تبریز، صندوق پستی: 5165665931، تبریز ـ ایران

4 پژوهشکده‌ی گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، صندوق پستی: 1483963113، تهران ـ ایران

چکیده

اثر لجن فاضلاب در سطوح صفر، 15، 30 و 60 گرم بر کیلوگرم خاک که در معرض پرتو گاما با دزهای صفر، 5، 10 و kGy 20 قرار گرفته بودند، بر جذب عناصر غذایی پرمصرف و سدیم در ریشه و شاخساره گیاه ریحان بررسی شد. نتایج نشان داد که کاربرد لجن فاضلاب پرتوتابی شده و نشده در سطوح 15 و 30 گرم بر کیلوگرم خاک سبب افزایش جذب فسفر، پتاسیم، کلسیم، منیزیم و سدیم ریشه و شاخساره و نیتروژن شاخساره گردید. کاربرد 60 گرم بر کیلوگرم لجن فاضلاب پرتوتابی شده و نشده با دزهای پرتوتابی مورد استفاده در این پژوهش بر جذب فسفر، پتاسیم، منیزیم و سدیم شاخساره و ریشه، نیتروژن شاخساره و کلسیم ریشه تأثیر معناداری نداشت اما باعث کاهش معنادار جذب کلسیم شاخساره نسبت به شاهد گردید. بیش­ترین جذب فسفر، پتاسیم، کلسیم و منیزیم شاخساره و ریشه و نیتروژن شاخساره از کاربرد 30 گرم بر کیلوگرم لجن فاضلاب پرتوتابی شده با دز kGy 20 حاصل گردید. بیش­ترین جذب سدیم ریشه و شاخساره نیز از کاربرد 30 گرم بر کیلوگرم لجن فاضلاب پرتوتابی شده با kGy 10 مشاهده شد. با به کارگیری لجن پرتوتابی شده نسبت به پرتوتابی نشده در هر سطح، مقدار جذب تمام عناصر مورد مطالعه در ریشه و شاخساره افزایش یافت.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of sewage sludge irradiation on uptake of macronutrients and sodium in basil plant under greenhouse conditions

نویسندگان [English]

  • B. Asgari Lajayer 1
  • N. Najafi 1
  • E. Moghiseh 2
  • M. Mosaferi 3
  • J. Hadian 4

1 Department of Soil Science, Faculty of Agriculture, University of Tabriz, P.O.Box: 5166616422, Tabriz– Iran

2 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 31465-1498, Karaj - Iran

3 Health and Environment Research Center, Tabriz University of Medical Sciences, P.O.Box: 5165665931, Tabriz – Iran

4 Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, P.O.Box: 1483963113, Tehran - Iran

چکیده [English]

Effects of 0, 15, 30 and 60 g per kg of sewage sludge exposed to gamma irradiation at doses of 0, 5, 10 and 20 kGy were investigated on macronutrients and sodium uptakes in the basil root and shoot. The results showed that using 15 and 30 g sewage sludge per kg soil increases the uptake of phosphorus, potassium, calcium, magnesium, and sodium in the root and shoot, as well as the nitrogen of the shoot. The application of 60 g irradiated and non-irradiated sewage sludge with the irradiation doses used in this study per kg of soil did not cause significant effects on phosphorus, potassium, magnesium, and sodium absorption in the shoot and root, nitrogen in the shoot, and calcium in the root. However, it significantly decreased the calcium absorption of shoots. The maximum uptake of phosphorus, potassium, calcium and magnesium in the root and shoot and nitrogen in the shoot was obtained in 30 g per kg sewage sludge irradiated with 20 kGy absorbed dose. The maximum uptake of sodium was revealed in 30 g per kg sewage sludge irradiated with 10 kGy absorbed dose. With application of irradiated sewage sludge relative to non-irradiated in each level, the absorption of all studied elements increased in the basil root and shoot.
 

کلیدواژه‌ها [English]

  • Organic wastes
  • Ionizing radiation
  • Macronutrients
  • Medicinal plants
1.             Study of the mechanisms of gamma rays in purification and disinfection of sewage sludge, J. Radiat. Nucl. Technol. 2(1), 9 (2015a). (In Persian).
 
2.             I.S. Turovskiy, P. Mathai, Wastewater sludge processing, (Wiley Interscience, New Jersey, 2006).
 
3.             B. Bina, H. Movahedian, A. Amini, Evaluation of potentially harmful substances in dried sludge of Isfahan Wastewater Treatment Plants, J. Water. Wastewater 15(1), 34 (2004). (In Persian).
 
4.             Sh. Shafieepour, B. Ayati, H. Ganjidoust, Reuse of Sewage Sludge for Agricultural Soil Improvement (Case Study: Kish Island), J. Water. Wastewater 22(2), 85 (2011). (In Persian).
 
5.             R. El-Motaium, in: Proceedings of the 2nd Environmental Physics Conference, Application of nuclear techniques in environmental studies and pollution control, (Alexandria, Egypt, 2006),  169-182 (2006).
 
6.             A. Chmielewski, Practical applications of radiation chemistry, Russ. J. Phys. Chem. A., 81, 1488 (2007).
 
7.             P.H. Rathod et al. Recycling gamma irradiated sewage sludge as fertilizer: A case study using onion (Alium cepa). Appl. Soil. Ecol. 41 (2), 223 (2009).
 
8.             P.H. Rathod, J.C. Patel, A.J. Jhala, Potential of gamma irradiated sewage sludge as fertilizer in radish: evaluating heavy-metal accumulation in sandy loam soil. Commun. Soil. Sci. Plant. Anal. 42 (3), 263 (2011).
 
9.             J. Priyadarshini, P. Roy, A. Mazumdar, Qualitative and Quantitative Assessment of Sewage Sludge by Gamma Irradiation with Pasteurization as a Tool for Hygienization. J. Institut. Engine. (India): Series A 95 (1), 49 (2014).
 
10.          C. Magnavacca, in: Irradiated sewage sludge for application to cropland, (International Atomic Energy Agency, Vienna, Austria, 2002).
 
11.          R.D. Limam et al. Assessment of the toxicity and the fertilizing power from application of gamma irradiated anaerobic sludge as fertilizer: Effect on Vicia faba growth. Radiat. Phys. Chem. 150, 163 (2018).
 
12.          B. Asgari Lajayer, M. Ghorbanpour, S. Nikabadi, Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf. 145, 377 (2017).
 
13.          M. Ziaei et al. A Review on Ocimum basilicum L. Medicinal Plant with a Focus on the most Important Secondary Compounds and its Medicinal and Agronomic Properties, J. Med. Plant. 4 (52), 26 (2014).
 
14.          M. Hamzezadeh et al. The effect of different irrigation water levels on Water Use Efficiency in Basil Plant (Ocimum Basilicum var. Keshkeny Levelu) Using Marginal Analysis Theory, J. Water. Soil. 25 (5), 953 (2011).
 
15.          M. Dadvand Sarab et al. Changes in Essential Oil Content and Yield of Basil in Response to Different Levels of Nitrogen and Plant Density. J. Med. Plant. 3 (27), 60 (2008).
 
16.          G.A. Pandya et al. Effect of gamma-irradiated sludge on the growth and yield of rice (Oryza sativa L. var. GR-3). Environ. Pollut. 51, 63 (1988).
 
17.          S. Ahmed, M. Hossain, S. Rahman, Irradiated sewage sludge for application to cropland, (International Atomic Energy Agency, Vienna, Austria, 2002).
 
18.          G.J. Bouyoucos, Hydrometer method improved for making particle size analyses of soils. Agronomy. J. 54, 464 (1962).
 
19.          A. Walkley, I.A. Black, An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil. Sci. 37 (1), 29 (1934).
 
20.          P.K. Gupta, Soil, Plant. Water and Fertilizer Analysis, (Agrobios, New Delhi, India 2000).
 
21.          C.A. Bower, R.F. Reitmeir, M. Fireman, Exchangeable cation analysis of saline and alkali soils. Soil. Sci. 73, 251 (1952).
 
22.          A.L. Page, R.H. Miller, D.R. Keeney, Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. (American Society of Agronomy. Soil Science Society of America, Madison, Wisconsin, USA, 1982).
 
23.          J. Bremner, C. Mulvaney, Nitrogen total. Methods of soil analysis, Part 2. Chemical and microbiological properties. (American Society of Agronomy. Soil Science Society of America, Madison, Wisconsin, USA, 1982)
 
24.          S.R. Olsen, L.E. Sommers, Phsphorus. P 403-430, In: A.L. Page (Ed.), Methods of Soil Analysis, Part 2. Chemical and Microbiological Methods, 2nd ed. (American Society of Agronomy. Soil Science Society of America, Madison, Wisconsin, USA, 1982).
 
25.          W.L. Lindsay, W.A. Norvell, Development of DTPA Soil test for Zinc, Iron, Mangnese and Copper. Soil. Sci. Soc. Am. J. 42, 421 (1987).
 
26.          J. Etzel et al. BaneySewage sludge conditioning and disinfection by gamma irradiation. Am. J. Public. Health. Nations. Health 59 (11), 2067 (1969).
 
27.          G.B. Wickramanayake, O.J. Sproul, Decontamination technologies for release from bioprocessing facilities. Part V. decontamination of sludge. Critical .Rev. Environ. Sci. Technol. 19 (6), 515 (1990).
 
28.          M. Al-Bachir, M. Al-Adawi, M. Shamma, Synergetic effect of gamma irradiation and moisture content on decontamination of sewage sludge. Bioresour. Technol. 90 (2), 139 (2003).
 
29.          M. Chaychian et al. The mechanisms of removal of heavy metals from water by ionizing radiation. Radiat. Phys. Chem. 53 (2), 145 (1998), 145-150.
 
30.          A. Basfar, F.A. Rehim, Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation. Radiat. Phys. Chem. 65 (4), 527 (2002).
 
31.          L. Tahri et al. Wastewater treatment using gamma irradiation: Tétouan pilot station, Morocco. Radiat. Phys. Chem. 79 (4), 424 (2010).
 
32.          F. Parvin et al. Effect of gamma-irradiated textile effluent on plant growth. Int. J. Recycl. Organic. Waste. Agric, 4 (1), 23 (2015).
 
33.          USEPA, Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation Using Lauryl Tryptose Broth (Ltb) and Ec Medium, (United States Environmental Protection Agency, Washington DC, USA, 2010).
 
34.          Sh. Mahmoudi, N. Najafi, A. Reyhanitabar, Effect of soil moisture and sewage-sludge compost on some soil chemical properties and alfalfa forage macronutrients concentrations in greenhouse conditions. J. Sci. Technol. Greenhouse. Culture 6 (22), 37 (2015). (In Persian).
 
35.          R.L. Westerman, Soil Testing and Plant Analysis. 3rd Edition, Book Series No. 3, (Soil Science Society of America, Washington DC, USA,1990)
 
36.          J. Peters, Recommended Methods of Manure Analysis. (University of Wisconsin Cooperative Extension Publication, Washington DC, USA, 2003).
 
37.          H. Asgari Lajayer, N. Najafi, M. Moghiseh, Application of ionizing radiation effects on physical, chemical and biological properties of effluent wastewater. J. Land. Manage. 4 (1), 79 (2016). (In Persian).
 
38.          S. Dumontet, H. Dinel, S. Baloda, Pathogen reduction in sewage sludge by composting and other biological treatments: A review. Biol. Agric. Hortic. 16, 409 (1999).
 
39.          USEPA, The standards for the use or disposal of sewage sludge. Code of Federal Regulation-Part 503 Rule, Federal Register Nomber-9248–9415, (United States Environmental Protection Agency Press, Washington DC, USA, 1993).
 
40.          S. Borrely et al. Radiation processing of sewage and sludge, a review. Prog. Nucl. Energ. 33, 3 (1998).
 
41.          H. Watanabe, M. Takehisa, Disinfection of sewage sludge cake by gamma-irradiation. Radiat. Phys. Chem. 24, 41 (1984).
 
42.          S. Kazemalilou et al. Effects of integrated application of phosphorus fertilizer and sewage sludge on leaf chlorophyll index and some growth characteristics of sunflower under water deficit conditions. J. Soil Manage. Sustain. Prod. 7 (4), 1 (2018). (In Persian).
 
43.          Z. Guo et al. Gamma irradiation-induced Cd2+ and Pb2+ removal from different kinds of water. Radiat. Phys. Chem. 77 (9), 1021 (2008).
 
44.          G.A. Pandya et al., Inactivation of bacteria in sewage sludge by gamma radiation. Environ. Pollut. 43 (4), 281 (1987).
 
45.          C. Magnavacca, J. Graino, Additional advantages of irradiation treatment of sewage sludge for agriculture re-use. (International Atomic Energy Agency, Vienna, Austria, 2000).
 
46.          L. Chu, J. Wang, B. Wang, Effect of gamma irradiation on activities and physicochemical characteristics of sewage sludge. Biochem. Engin. J., 54 (1), 34 (2011).
 
47.          M. Sánchez-Polo et al., Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water. Res 43, 4028 (2009).
 
48.          S. Chu et al. Municipal sewage sludge compost promotes Mangifera persiciforma tree growth with no risk of heavy metal contamination of soil. Sci. Rep. 7, 13408 (2017).
 
49.          N. Najafi, S. Mardomi, Sh. Oustan, The effect of waterlogging, sewage sludge and manure on selected macronutrients and sodium uptake in sunflower plant in a loamy sand soil. J. Water. Soil. 26(3), 619 (2012). (In Persian).
 
50.          N. Asagi, H. Ueno. Determination of application effects of sewage sludge on growth, soil properties, and N uptake in komatsuna by using the indirect 15N isotope method. Commun. Soil. Sci. Plant. Anal. 39, 1928 (2008).
 
51.          M.A. Bozkurt, T. Yarilgac, The effect of sewage sludge application on the yield, growth, nutrition and heavy metal accumulation in apple trees growing in dry conditions. Turkish. J. Agric. Forest. 27, 285 (2003).
 
52.          H. Chenget al. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth. Ecol. Engin, 29, 96 (2007).
 
53.          J. Casado-Vela et al., Effect of composted sewage sludge application to soil on sweet pepper crop (Capsicum annuum var. annuum) grown under two exploitation regimes. Waste. Manage, 27, 1509 (2007).
 
54.          Pascual et al. Effect of water deficit on microbial characteristics in soil amended with sewage sludge or inorganic fertilizer under laboratory conditions. Bioresour. Technol. 98, 29 (2007).
 
55.          A.H.A. Hussein, Impact of sewage sludge as organic manure on some soil properties, growth, yield and nutrient contents of cucumber crop. J. Appl. Sci. 9, 1401 (2009).
 
56.          R.P. Singh, M. Agrawal, Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Engin. 36, 969 (2010).
 
57.          H. Dehghan Manshadi et al., Effect application of sewage sludge and sewage sludge enriched with chemical fertilizer on the rate of organic carbon, respiration and enzyme activity of soil under basil cultivation. J. Water. Soil. 26(3), 554 (2012).
 
58.          R.P. Singh, M. Agrawal, Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67, 2229 (2007).
 
59.          A. Lakhdar et al. Effect of municipal solid waste compost and sewage sludge use on wheat (Triticum durum): growth, heavy metal accumulation, and antioxidant activity, J. Sci. Food. Agric. 90, 965 (2010).
 
60.          G.A. Pandya, S. Sachidanand, V.V. Modi, Potential of recycling gamma-irradiated sewage sludge for use as a fertilizer: a study on chickpea (Cicer arietinum L.). Environ. Pollut. 56, 101 (1989).
 
61.          L. Zhou et al. Irradiated sewage sludge for application to cropland, (International Atomic Energy Agency, Vienna, Austria, 2002).
 
62.          R. El-Motaium, S. Badawy, Irradiated sewage sludge for application to cropland, (International Atomic Energy Agency, Vienna Austria, 2002).
 
63.          H. Marschner, Mineral Nutrition of Higher Plants, (Academic Press, New York, 2011).