鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
Mo鋼とV鋼における合金炭化物の水素トラップと析出
谷口 俊介 亀谷 美百合小林 由起子伊藤 一真山﨑 真吾
著者情報
ジャーナル オープンアクセス HTML

2023 年 109 巻 5 号 p. 438-449

詳細
抄録

Martensitic steels of Fe-0.1%C-2%Mn-1.6%Mo alloy and Fe-0.1%C-2%Mn-0.2%V alloy were subjected to tempering at 873 K to investigate hydrogen trapping of Mo carbides and V carbides. We carried out the detail analysis of the alloy carbides by atomic-resolution scanning transmission electron microscopy and atom probe tomography, and the evaluation of hydrogen trapping energy by ab initio calculation. The hydrogen content of the Mo added steel tempered for 1.8 ks increases from that of the quenched Mo added steel and the hydrogen content monotonically decreases as the tempering time increases. The hydrogen content of the V added steels increases during the tempering to 7.2 ks and then keeps almost constant. Plate-shaped B1-type Mo carbide with a chemical composition of MoC0.50 is precipitated in the Mo added steel tempered for 3.6 ks. Needle-shaped HCP Mo2C is precipitated and the B1-type Mo carbide decreases in the Mo added steel tempered for 14.4 ks. Plate-shaped B1-type V carbides with a chemical composition of VC0.75 is precipitated in the V added steel tempered for 14.4 ks. We found the positive correlation between the hydrogen content and the product of the interface area and the carbon vacancy fraction of B1-type alloy carbide. The hydrogen trapping energy of the carbon vacancy at the interface between BCC-Fe and B1-type Mo carbide is higher than that of the interstitial sites in BCC-Fe. These results suggest that the main trapping site in the tempered Mo added steel is the carbon vacancy at the interface of B1-type MoC0.50, not HCP Mo2C.

Fullsize Image
著者関連情報
© 2023 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top