ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Surface Treatment and Corrosion
Strengthening via Grain Refinement in Lath Martensite on Low Carbon Fe–18Ni Alloys
Hiroyuki Kawata Yoshiaki HondaKatsuya NakanoKengo TakedaKazuo Hikida
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 62 Issue 7 Pages 1502-1511

Details
Abstract

The lath martensite structure in steel offers high strength with a complex substructure, and its strength increases with carbon content. However, the mechanism of carbon strengthening is yet to be elucidated. In this study, we evaluate the tensile properties of as-quenched lath martensite without retained austenite in Fe–18Ni alloys containing 4–570 ppm carbon. In the 4 mass ppm carbon alloy, whose carbon is almost trapped by Ti(CN) particles, the work hardening behavior during uniform elongation is constant regardless of the size of the effective grain surrounded by a high angle boundary. In contrast, the yield point (YP), 0.2% proof stress (σ0.2%), 0.6% proof stress (σ0.6%), and maximum tensile strength (TS) in 7, 110, and 570 mass ppm carbon alloys increase with the refinement of their effective grain, consistent with the Hall–Petch relationship. The Hall–Petch intercepts for the YP, σ0.2%, σ0.6%, and TS are constant and unaffected by the carbon content. This suggests that the non-occurrence of solution hardening by solute carbon atoms in the lath martensite. The Hall–Petch coefficients for the YP, σ0.2%, σ0.6%, and TS increase with carbon content and are proportional to the square root of the carbon content. This indicates that the increase in carbon content increases the strength of the lath martensite via the refinement of effective grains and the increase in the effectiveness of grain refinement.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top