ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Forming Processing and Thermomechanical Treatment
Effect of Carbon Content on Machinability of Steel in Gear Cutting
Toshiharu Aiso Takashi Matsumura
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 1 Pages 292-301

Details
Abstract

Machinability of steels containing different carbon contents is evaluated in cutting with a fly tool of TiAlN coated high speed steel, as performed in gear cutting. In order to investigate the effect of carbon content on the cutting process, 0.2, 0.4 and 0.6 mass% C steels are prepared with controlling nearly the same hardness. The cutting tests are conducted to measure the cutting forces, observe the chip formations and analyze the damage on the rake and flank faces of the tools. The machinability of the tested steels is compared each other in terms of the cutting model in the cutting force simulation. The orthogonal cutting data are identified to minimize the discrepancies between the measured and the simulated forces. The shear stress on the shear plane becomes large at high carbon contents, and thus the cutting force increases with the carbon content. On the rake face of the tool, substrate softening and cracking in the coated thin layer occur in a certain cutting length. In cutting of the 0.6 mass% C steel, the cracks initiate rapidly in the coated thin layer on the rake face due to large cutting forces and cutting heat. Small flank wear is observed in the cutting of 0.2 and 0.4 mass% C steels, while in the 0.6 mass% C steel thermal wear with adhesion is promoted at high cutting temperatures.

Fullsize Image
Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top