Role of B-cells in Mycosis Fungoides

Authors

  • Pia Rude Nielsen Department of Pathology, Zealand University Hospital, DK-4000 Roskilde, Denmark
  • Jens Ole Eriksen
  • Mia Dahl Sørensen
  • Ulrike Wehkamp
  • Lise M. Lindahl
  • Michael Bzorek
  • Lars Iversen
  • Anders Woetman
  • Niels Ødum
  • Thomas Litman
  • Lise Mette Rahbek Gjerdrum

DOI:

https://doi.org/10.2340/00015555-3775

Keywords:

B-cells, cutaneous T-cell lymphoma, mycosis fungoides, tumour microenvironment

Abstract

Mycosis fungoides is the most common type of cutaneous T-cell lymphoma. The inflammatory micro­environment in mycosis fungoides is complex. There is accumulating evidence that the neoplastic T-cells take control of the microenvironment and thereby promote their own expansion by suppressing cellular immunity. B-cells have proved to be upregulated in large-cell transformed mycosis fungoides, and could potentially play a role in disease progression. To investigate the presence of B-cells in mycosis fungoides compared with controls, this study analysed 85 formalin-fixed and paraffin-embedded mycosis fungoides biopsies. MS4A1 gene expression was significantly upregulated in mycosis fungoides compared with controls (p < 0.0001) and further upregulated in disease progression, (p = 0.001). Digital quantification of PAX5+/CD20+ cells confirmed the increased presence of B-cells in mycosis fungoides compared with controls. No co-labelling of CD3/CD20 was observed in the neoplastic T-cells. This study found a significantly increased presence of B-cells in the tumour-associated microenvironment in mycosis fungoides. These findings could potentially lead to new treatment strategies for mycosis fungoides.

Downloads

Download data is not yet available.

References

Willemze R, Cerroni L, Kempf W, Berti E, Facchetti F, Swerdlow SH, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 2019; 18: 1703-1714.

DOI: https://doi.org/10.1182/blood-2018-11-881268

Swerdlow SH, Campo E, Pileri SA, Lee Harris N, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127; 2375-2390.

DOI: https://doi.org/10.1182/blood-2016-01-643569

Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005; 105: 3768-3785.

DOI: https://doi.org/10.1182/blood-2004-09-3502

McGirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB, Zic JA, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood 2015; 23: 508-519.

DOI: https://doi.org/10.1182/blood-2014-11-611194

Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet 2015; 47: 1011-1019.

DOI: https://doi.org/10.1038/ng.3356

Ungewickell A, Bhaduri A, Rios E, Reuter J, Lee CS, Mah A, et al. Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2. Nat Genet 2015; 47: 1056-1060.

DOI: https://doi.org/10.1038/ng.3370

Da Silva Almeida AC, Abate F, Khiabanian H, Martinez-Escala E, Guitart J, Tensen CP, et al. The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat Genet 2015; 47: 1465-1470.

DOI: https://doi.org/10.1038/ng.3442

Ralfkiaer U, Hagedorn PH, Bangsgaard N, Løvendorf MB, Ahler CB, Svensson L, et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 2011; 118: 5891-5900.

DOI: https://doi.org/10.1182/blood-2011-06-358382

Ralfkiaer U, Lindal L, Litman T, Gjerdrum LM, Ahler CB, Gniadecki R, et al. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Res 2014; 34: 7207-7217.

Sibbesen NA, Kopp KL, Litvinov I V., Jønson L, Willerslev-Olsen A, Fredholm S, et al. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-cell lymphoma. Oncotarget 2015; 6: 20555-20569.

DOI: https://doi.org/10.18632/oncotarget.4111

Moyal L, Yehezkel S, Gorovitz B, Keren A, Gilhar A, Lubin I, et al. Oncogenic role of microRNA-155 in mycosis fungoides: an in vitro and xenograft mouse model study. Br J Dermatol 2017; 177: 791-800.

DOI: https://doi.org/10.1111/bjd.15422

Talpur R, Bassett R, Duvic M. Prevalence and treatment of Staphylococcus aureus colonization in patients with mycosis fungoides and Sézary syndrome. Br J Dermatol 2008; 159: 105-112.

DOI: https://doi.org/10.1111/j.1365-2133.2008.08612.x

Lindahl LM, Willerslev-Olsen A, Gjerdrum LMR, Nielsen PR, Blümel E, Rittig AH, et al. Antibiotics inhibit tumor and disease activity in cutaneous T cell lymphoma. Blood 2019; 134: 1072-1083.

DOI: https://doi.org/10.1182/blood.2018888107

Willerslev-Olsen A, Krejsgaard T, Lindahl LM, Bonefeld CM, Wasik MA, Koralov SB, et al. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma. Toxins 2013; 5: 1402-1421.

DOI: https://doi.org/10.3390/toxins5081402

Krejsgaard T, Lindahl LM, Mongan NP, Wasik MA, Litvinov I V., Iversen L, et al. Malignant inflammation in cutaneous T-cell lymphoma - hostile takeover. Semin Immunopathol 2016; 39: 269-282.

DOI: https://doi.org/10.1007/s00281-016-0594-9

Miyagaki T, Sugaya M. Immunological milieu in mycosis fungoides and Sézary syndrome. J Dermatol 2014; 41: 11-18.

DOI: https://doi.org/10.1111/1346-8138.12305

Akatsuka T, Miyagaki T, Nakajima R, Kamijo H, Oka T, Takahashi N, et al. Decreased IL-10-producing regulatory B cells in patients with advanced mycosis fungoides. Eur J Dermatology 2018; 28: 314-319.

DOI: https://doi.org/10.1684/ejd.2018.3319

Miyagaki T, Fujimoto M, Sato S. Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research. Int Immunol 2015; 27: 495-504.

DOI: https://doi.org/10.1093/intimm/dxv026

Shin J, Monti S, Aires DJ, Duvic M, Golub T, Jones DA, et al. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome. Blood 2007; 110: 3015-3027.

DOI: https://doi.org/10.1182/blood-2006-12-061507

Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Kneitz H, Eriksen KW, Lovato P, et al. Ectopic expression of B-lymphoid kinase in cutaneous T-cell lymphoma. Blood 2009; 113: 5896-5904.

DOI: https://doi.org/10.1182/blood-2008-09-181024

Jullié ML, Carlotti M, Vivot A, Beylot-Barry M, Ortonne N, Frouin E, et al. CD20 antigen may be expressed by reactive or lymphomatous cells of transformed mycosis fungoides: Diagnostic and prognostic impact. Am J Surg Pathol 2013; 37: 1845-1854.

DOI: https://doi.org/10.1097/PAS.0000000000000091

Vergier B, de Muret A, Beylot-Barry M, Vaillant L, Ekouevi D, Chene G, et al. Transformation of mycosis fungoides: clinicopathological and prognostic features of 45 cases. French Study Group of Cutaneious Lymphomas. Blood 2000; 95: 2212-2218.

Nielsen PR, Eriksen JO, Lindahl LM, Wehkamp U, Bzorek M, Andersen G, et al. Diagnostic two-gene classifier in early-stage mycosis fungoides: a retrospective multicenter study. J Invest Dermatol 2021; 141: 213-217.e5.

DOI: https://doi.org/10.1016/j.jid.2020.04.026

Nielsen PR, Eriksen JO, Wehkamp U, Lindahl LM, Gniadecki R, Fogh H, et al. Clinical and histological characteristics of mycosis fungoides and Sézary syndrome: a retrospective, single-centre study of 43 patients from eastern Denmark. Acta Derm Venereol 2019; 99: 1231-1236.

DOI: https://doi.org/10.2340/00015555-3351

Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007; 110: 1713-1722.

DOI: https://doi.org/10.1182/blood-2007-03-055749

Bzorek M, Stamp IM, Petersen BL, Frederiksen L. Use of commercially available rabbit monoclonal antibodies for immunofluorescence double staining. Appl Immunohistochem Mol Morphol 2008; 16: 387-392.

DOI: https://doi.org/10.1097/PAI.0b013e3181594ec6

Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 2006; 93: 491-507.

DOI: https://doi.org/10.1093/biomet/93.3.491

Van Der Putte SCJ, Toonstra J, Van Wichen DF. B cells and plasma cells in mycosis fungoides. A study including cases with B cell follicle formation or a monotypical plasma cell component. Am J Dermatopathol 1989; 11: 509-516.

DOI: https://doi.org/10.1097/00000372-198912000-00001

Theurich S, Schlaak M, Steguweit H, Heukamp LC, Wennhold K, Kurschat P, et al. Targeting tumor-infiltrating B cells in cutaneous T-cell lymphoma. J Clin Oncol 2014; 32: 110-116.

DOI: https://doi.org/10.1200/JCO.2013.50.9471

Iliadis A, Koletsa T, Patsatsi A, Georgiou E, Sotiriadis D, Kostopoulos I, et al. The cellular microenvironment and neoplastic population in mycosis fungoides skin lesions: a clinicopathological correlation. Eur J Dermatol 2016; 26: 566-571.

DOI: https://doi.org/10.1684/ejd.2016.2847

Benner MF, Jansen PM, Vermeer MH, Willemze R. Prognostic factors in transformed mycosis fungoides: a retrospective analysis of 100 cases. Blood 2012; 119: 1643-1649.

DOI: https://doi.org/10.1182/blood-2011-08-376319

Barberio E, Thomas L, Skowron F, Balme B, Dalle S. Transformed mycosis fungoides: clinicopathological features and outcome. Br J Dermatol 2007; 157: 284-289.

DOI: https://doi.org/10.1111/j.1365-2133.2007.08008.x

Nelson BH. CD20 + B cells: the other tumor-infiltrating lymphocytes. J Immunol 2010; 185: 4977-4982.

DOI: https://doi.org/10.4049/jimmunol.1001323

Milne K, Köbel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 2009; 4: e6412.

DOI: https://doi.org/10.1371/journal.pone.0006412

Tadmor T, Zhang Y, Cho HM, Podack ER, Rosenblatt JD. The absence of B lymphocytes reduces the number and function of T-regulatory cells and enhances the anti-tumor response in a murine tumor model. Cancer Immunol Immunother 2011; 60: 609-619.

DOI: https://doi.org/10.1007/s00262-011-0972-z

Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res 2011; 71: 3505-3515.

DOI: https://doi.org/10.1158/0008-5472.CAN-10-4316

Ghosn S, Bahhady R, Mahfouz R, Abbas O, Kibbi AG, Saad R, et al. Concomitant occurrence of kimura disease and mycosis fungoides in a lebanese woman: significance and response to rituximab. Am J Dermatopathol 2009; 31: 814-818.

DOI: https://doi.org/10.1097/DAD.0b013e3181acedf8

Czarnowicki T, Gonzalez J, Bonifacio KM, Shemer A, Xiangyu P, Kunjravia N, et al. Diverse activation and differentiation of multiple B-cell subsets in patients with atopic dermatitis but not in patients with psoriasis. J Allergy Clin Immunol 2016; 137: 118-129.

DOI: https://doi.org/10.1016/j.jaci.2015.08.027

Simon D, Hösli S, Kostylina G, Yawalkar N, Simon HU. Anti-CD20 (rituximab) treatment improves atopic eczema. J Allergy Clin Immunol 2008; 121: 122-128.

DOI: https://doi.org/10.1016/j.jaci.2007.11.016

Jimenez-Boj E, Stamm TA, Sadlonova M, Rovensky J, Raffayová H, Leeb B, et al. Rituximabin psoriatic arthritis: an exploratory evaluation. Ann Rheum Dis 2012; 71: 1868-1871.

DOI: https://doi.org/10.1136/annrheumdis-2012-201897

Kersh AE, Feldman RJ. Autoimmune sequelae following rituximab therapy: a review of the literature and potential immunologic mechanisms. J Clin Rheumatol 2018; 24: 427-435.

DOI: https://doi.org/10.1097/RHU.0000000000000756

Published

2021-03-11

How to Cite

Nielsen, P. R., Eriksen, . J. O., Sørensen, M. D., Wehkamp, U., Lindahl, L. M., Bzorek, M., Iversen, L., Woetman, A., Ødum, N., Litman, T., & Gjerdrum, L. M. R. (2021). Role of B-cells in Mycosis Fungoides. Acta Dermato-Venereologica, 101(3), adv00413. https://doi.org/10.2340/00015555-3775