Skip to main content
Log in

Nonmetric Multidimensional Scaling of Asymmetric Proximities

  • Published:
Behaviormetrika Aims and scope Submit manuscript

Abstract

Nonmetric multidimensional scaling which could be applied to a square asymmetric inter-stimulus proximity matrix is presented. In the model each stimulus is represented as a point and a circle (sphere, hypersphere) whose center is at that point in a multidimensional Euclidean space. The radius of a circle (sphere, hypersphere) tells the skew-symmetry of the corresponding stimulus. In a sense the model is a nonmetric generalization of Weeks and Bentler (1982) ’s model. An algorithm to derive the coordinates of points and radii of circles (spheres, hypers-pheres) which minimize the discrepancy of the coordinates and radii from the monotone relationship with given interstimulus proximities is described. An application to car switching data among 16 car segments is represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appelman, I.B. and Mayzner, M.S. (1982). Application of geometric models to letter recognition: Distance and density; Journal of Experimental Psychology: General, 111, 60–100.

    Article  Google Scholar 

  • Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W. (Eds.) (1975). Discrete Multivariate Analysis: Theory and Practice; The MIT Press.

    Google Scholar 

  • Blau, P.M. and Duncan, O.D. (1967). The American Occupational Structure; New York: Wiley.

    Google Scholar 

  • Carroll, J.D. (1977). Impact scaling: Theory, mathematical model, and estimation procedures; Proceedings of the Human Factors Society, 21, 513–517.

    Article  Google Scholar 

  • Carroll, J.D. and Arabiem, P. (1980). Multidimensional scaling; Annual Review of Psychology, 31, 607–649.

    Article  Google Scholar 

  • Carroll, J.D. and Chang. J.J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition; Psychometrika, 35, 283–319.

    Article  Google Scholar 

  • Carroll, J.D. and Sen, T.K. (1976). Impact scaling; Paper presented at the Annual Meeting of the Society for Multivariate Experimental Psychology at the Pennsylvania State University.

    Google Scholar 

  • Cermak, G.W. and Cornillon, P.C. (1976). Multidimensional analysis of judgments about traffic noise; Journal of Acoustical Society of America, 59, 1412–1420.

    Article  Google Scholar 

  • Chino, N. (1978). A graphical technique for representing the asymmetric relationships between N objects; Behaviometrika, No. 5, 23–40.

    Google Scholar 

  • Cliff, N. (1968), Orthogonal rotation to congruence; Psychometrika, 31, 33–42.

    Article  MathSciNet  Google Scholar 

  • Constantine, A.C. and Gower, J.C. (1978). Graphical representation of asymmetric matrices; Applied Statistics, 27, 297–304.

    Article  Google Scholar 

  • Coombs, C.H. (1964). A Theory of Data; Wiley.

    Google Scholar 

  • Coxon, A.P.M. (1982). The User’s Guide to Multidimensional Scaling; Heinemann Educational Books. Cunningham, J.P. (1978). Free trees and bidirectional trees as representations of psychological distance; Journal of Mathematical Psychology, 17, 165–188.

    MathSciNet  Google Scholar 

  • Davison, M.L, (1983). Multidimensional Scaling; Wiley.

    MATH  Google Scholar 

  • DeSarbo, W.S. (1978). Three-way unfolding and situational dependence in consumer preference analysis; PhD thesis. University of Pennsylvania, Philadelphia, Pennsylvania.

    Google Scholar 

  • Gower, J.C. (1977). The analysis of asymmetry and orthogonality; In J.R. Barra, F. Brodeau, G. Romier and B. van Cutsem (Eds.), Recent Devlopments in Statistics. North Llolland, 109–123.

    Google Scholar 

  • Gower, J.C. and Digby, P.G.N. (1981), Expressing complex relationships in two dimensions; In V. Barnett (Ed.), Interpreting Multivariate Data. Wiley, 83–118.

    Google Scholar 

  • Green, P.E. (1975). On the robustness of multidimensional scaling techniques; Journal of Marketing Research, 12, 73–81.

    Article  Google Scholar 

  • Harshman, R.A. (1978). Models for analysis of asymmetrical relationships among N objects or stimuli; Paper presented at the First Joint Meeting of the Psychometric Society and the Society for Mathematical Psychology at McMaster University, Hamilton, Ontario.

    Google Scholar 

  • Harshman, R.A. (1981). DEDICOM Multidimensional analysis of skew symmetric data; Technical Memorandum, Bell Telephone Laboratories.

    Google Scholar 

  • Harshman, R.A., Green, P.E., Wind, Y., and Lundy, M.E. (1982). A model for the analysis of asymmetric data in marketing research; Marketing Science, 1, 205–242.

    Article  Google Scholar 

  • Harshman, R.A. and Lundy, M.E. (1984). The PARAFAC model for three-way factor analysis and multidimensional scaling; In H.G. Law, C.W. Snyder, J.A. Hattie, & R.P. McDonald (Eds.), Research Methods for Multimode Data Analysis. New York; Praeger, 122–215.

    Google Scholar 

  • Holman, E.W. (1979). Monotonie models for asymmetric proximities; Journal of Mathematical Psychology, 20, 1–15.

    Article  Google Scholar 

  • Holyoak, K.J. and Gordon, P.C. (1983). Social reference points; Journal of Personality and Social Psychology, 44, 881–887.

    Article  Google Scholar 

  • Holyoak, K.J. and Mah, W.A. (1982). Cogntive reference points in judgments of symbolic magnitude; Cognitive Psychology, 14, 328–352.

    Article  Google Scholar 

  • Jones, F.N., Roberts, K., and Holman, E.W. (1978). Similarity judgments and recognition memory for some common spices; Perception and Psychophysics, 24, 2–6.

    Article  Google Scholar 

  • Keren, G. and Baggen, S. (1981). Recognition models of alphanumeric characters; Perception and Psychophysics. 29, 234–246.

    Article  Google Scholar 

  • Krumhansl, C.L. (1978). Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density; Psychological Review, 85, 445–463.

    Article  Google Scholar 

  • Kruskal, J.B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis; Psychomeirika, 29, 1–27.

    Article  MathSciNet  Google Scholar 

  • Kruskal, J.B. (1964b). Nonmetric multidimensional scaling; A numerical method; Psychomeirika, 29, 115–129.

    Article  MathSciNet  Google Scholar 

  • Lingoes, J.C. and Roskam, E.E. (1973). A mathematical and empirical analysis of two multidimensional scaling algorithms; Psychomeirika Monograph Supplement, No. 19.

    Google Scholar 

  • Lorr, M. (1983). Cluster Atialysis for Social Scientists; Jossey-Bass.

    Google Scholar 

  • Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979). Multivariate. Analysis; Academic Press.

    MATH  Google Scholar 

  • Moar, I. and Bower, G.H. (1983). Inconsistency in spatial knowledge; Memory and Cognition, 11, 107–113.

    Article  Google Scholar 

  • Okada, A. (1986). Asymmetric multidimensional scaling of intergenerational occupational mobility; Proceedings of the Second Japan-China Symposium on Statistics. Kyushu University, Fukuoka, Japan, 197–200.

    Google Scholar 

  • Okada, A. and Imaizumi, T. (1984). Geometric models for asymmetric similarity data; Research Report, Rikkyo (St. Paul’s) University. au]Okada, A. and Imaizumi, T. (in press). How to use nonmetric asymmetric multidimensional scaling program (NAMS Version 1. lf); Journal of Applied Sociology.

    Google Scholar 

  • Podgorny, P. and Garner, W.R. (1979). Reaction time as a measure of inter and intraobject visual similarity: Letters of the alphabet; Perception and Psychophysics, 26, 37–52.

    Article  Google Scholar 

  • Rips, L.J., Shoben, E.J., and Smith, E.E. (1973). Semantic distance and the verification of semantic relations; Journal of Verbal Learning and Verbal Behavior, 12, 1–20.

    Article  Google Scholar 

  • Rosch, E. (1975). Cognitive reference points; Cognitive Psychology, 7, 532–547.

    Article  Google Scholar 

  • Rothkopf, E.Z. (1957). A measure of stimulus similarity and errors in some paired-associate learning tasks; Journal of Experimental Psychology, 53, 94–101.

    Article  Google Scholar 

  • Sadalla, E.K., Burroughs, W.J., and Staplin, L.J. (1980). Reference points in spatial cognition; Journal of Experimental Psychology: Human Learning and Memory, 6, 516–528.

    Google Scholar 

  • Saito, T. (1986). Multidimensional scaling to explore complex aspects in dissimilarity judgment; Behaviorynetrika, No. 20, 35–62.

    Google Scholar 

  • Schiffman, S.S., Reynolds, M.L., and Young, F.W. (1981). Introduction to Multidimensional Scaling; Academic Press.

    MATH  Google Scholar 

  • Shepard, R.N. (1963). Analysis of proximities as a technique for the study of information processing in man; Human Factors, 5, 33–48.

    Article  Google Scholar 

  • Smith, E.E. and Medin, D.L. (1981). Categories and Concepts; Harvard University Press.

    Book  Google Scholar 

  • Spence, I. (1972). A Monte Carlo evaluation of three nonmetric multidimensional scaling algorithms; Psychomeirika, 37, 461–486.

    Article  Google Scholar 

  • Spence, I. and Graef, J. (1974). The determination of the underlying dimensionality of an empirically obtained matrix of proximities; Multivariate Behavioral Research, 9, 331–341.

    Article  Google Scholar 

  • Tobler, W. (1977), Spatial interaction patterns; Journal of Environmental Systems, 6, 271–301.

    Article  Google Scholar 

  • Tobler, W. (1979). Estimation of attractivities from interactions; Environment and Planning A, 11, 121–127.

    Article  Google Scholar 

  • Torgerson, W.S. (1958). Theory and Methods of Scaling; Wiley.

    Google Scholar 

  • Tversky, A. (1977). Features of similarity; Psychological Review, 84, 327–352.

    Article  Google Scholar 

  • Tversky, A. and Gati, I. (1982). Similarity, separability, and the triangle inequality; Psychological Review, 89, 123–154.

    Article  Google Scholar 

  • Urban, G.L. and Hauser, J.R. (1980). Design and Marketing of New Products; Prentice Hall.

    Google Scholar 

  • Weeks, D.G. and Bentler, P.M. (1982). Restricted multidimensional scaling models for asymmetric proximities; Psychometrika, 47, 201–208.

    Article  Google Scholar 

  • Young, F.W. (1975). An asymmetric Euclidean model for multi-process asymmetric data; Proceedings of the US-Japan Seminar on the Theory, Methods and Applications of Multidimensional Scaling and Related Techniques at the University of California San Diego, La Jolla, California.

    Google Scholar 

  • Zinnes, J.L. and Wolff, R.P. (1977). Single and multidimensional same-different judgments; Journal of Mathematical Psychology, 16, 30–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the Rikkyo (St. Paul’s) University Research Fund. The authors would like to express their gratitude to The Institute of Management Sciences and the authors of “A model for the analysis of asymmetric data in marketing research” by R.A. Harshman, P.E. Green, Y. Wind, and M. Lundy, 1982, Marketing Science, 1, 205–242 for permitting and approving to adopt their tables. Request of reprints should be made to the first author.

About this article

Cite this article

Okada, A., Imaizumi, T. Nonmetric Multidimensional Scaling of Asymmetric Proximities. Behaviormetrika 14, 81–96 (1987). https://doi.org/10.2333/bhmk.14.21_81

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2333/bhmk.14.21_81

Key Words and Phrases

Navigation