Skip to main content
Log in

Seed protein polymorphism in Phlox pilosa (Polemoniaceae)

  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

A survey of seed protein profiles inP. pilosa revealed three bands in addition to the typical complement in northern Illinois and Indiana populations. One of the novel proteins has the same (fast) migration velocity as a protein in the standard complement ofP. glaberrima. Both of these proteins hybridize with one of the standardP. pilosa proteins to produce two additional bands. The fast protein varies in frequency between populations and is most prevalent in areas where there is the greatest potential for hybridization withP. glaberrima. These data suggest that the fast band ofP. pilosa may have been introduced fromP. glaberrima despite strong incompatibility barriers, and increased in frequency through selective accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Altschul, A. M., L. Y. Yatsu, R. L. Ory, &E. M. Engleman 1966. Seed proteins. Annual Rev. Pl. Physiol.17: 113–136.

    Article  CAS  Google Scholar 

  • Antonovics, J. 1968. Evolution in closely adjacent populations. VI. Manifold effects of gene flow. Heredity23: 507–524.

    Google Scholar 

  • Boulter, D., D. A. Thurman, &E. Derbyshire 1967. A disc electrophoresis study of globulin proteins of legume seeds with reference to their systematics. New Phytol.66: 27–36.

    Article  CAS  Google Scholar 

  • Boyd, W. J. R. &J. W. Lee 1967. The control of wheat glutin synthesis at the genome and chromosome levels. Experientia23: 332–333.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, J. P., F. R. H. Katterman, &J. E. Endrizzi 1970. Comparative studies of seed proteins of species ofGossypium by gel electrophoresis. Evolution24: 431–447.

    Article  Google Scholar 

  • Davis, B. J. 1964. Disc electrophoresis. II. Methods and application. Ann. New York Acad. Sci.121: 404–427.

    Article  CAS  Google Scholar 

  • Dunnhill, P. M. &L. Fowden 1965. The amino acids of seeds of the Cucurbitaceae. Phytochemistry4: 933–944.

    Article  Google Scholar 

  • Epling, C., H. Lewis, &F. M. Ball 1960. The breeding group and seed storage: a study in population dynamics. Evolution14: 238–255.

    Article  Google Scholar 

  • Fox, D. J., D. A. Thurman, &D. Boulter 1964. Studies on the proteins of the seeds of the Leguminosae. I. Albumins. Phytochemistry3: 417–419.

    Article  CAS  Google Scholar 

  • Gajewski, W. 1957. A cytogenetic study on the genusGeum L. Monogr. Bot.4: 1–415.

    Google Scholar 

  • Garcia-Olmedo, F. &P. Carbonero 1970. Homeologous protein synthesis controlled by homeologous chromosomes in wheat. Phytochemistry9: 1495–1497.

    Article  CAS  Google Scholar 

  • Harlan, J. R. & J. M. J. de Wet 1963. The compilospecies concept. Evolution17: 497–501.

    Article  Google Scholar 

  • Harper, J. L., P. H. Lovell, &K. G. Moore 1970. The shapes and size of seeds. Annual Rev. Ecol. Syst.1: 327–356.

    Article  Google Scholar 

  • Heiser, C. B. 1951. Hybridization in the annual sunflowers:Helianthus annus XH. debilis var.cucumerifolius. Evolution5: 42–51.

    Article  Google Scholar 

  • Hunziker, J. H. 1967. Chromosome and protein differentiation in theAgropyron scabriglume complex. Taxon16: 259–266.

    Article  CAS  Google Scholar 

  • Jackson, P., J. M. Milton, &D. Boulter 1967. Fingerprint patterns of the globulin fraction obtained from seeds of various species of the Fabaceae. New Phytol.66: 47–56.

    Article  CAS  Google Scholar 

  • Johnson, B. L. 1969. The protein electrophoresis approach to species relationships in wheat. pp. 19–41.In: R. Bogart [ed.], Lectures in Genetics. Vol. 1. Oregon State Univ. Press, Corvallis.

    Google Scholar 

  • Larson, A. L. &B. E. Caldwell 1968. Inheritance of certain proteins in soybean seed. Crop Sci.8: 474–476.

    Article  Google Scholar 

  • Lee, J. W. &J. A. Ronalds 1967. Effect of environments on wheat gliadin. Nature (London)213: 844–846.

    Article  CAS  Google Scholar 

  • Levin, D. A. 1966. ThePhlox pilosa complex: Crossing and chromosome relationships. Brittonia18: 142–162.

    Article  Google Scholar 

  • — 1967a. Natural selection for reproductive isolation inPhlox. Evolution21: 679–687.

    Article  Google Scholar 

  • — &H. W. Kerster 1968. Local gene dispersal inPhlox. Evolution22: 130–139.

    Article  Google Scholar 

  • — 1971. Secondary intergradation and genome incompatibility inPhlox pilosa. Brittonia23: 246–265.

    Article  Google Scholar 

  • — 1970a. Reticulate evolution inPhlox as seen through protein electrophoresis. Amer. J. Bot.57: 977–987.

    Article  Google Scholar 

  • — &B. A. Schaal 1970b. Corolla color as an inhibitor of interspecific hybridization inPhlox. Amer. Naturalist104: 273–283.

    Article  Google Scholar 

  • Markert, C. L. 1963. Lactate dehydrogenase: dissociation and recombination of subunits. Science140: 1329–1330.

    Article  PubMed  CAS  Google Scholar 

  • McDaniel, R. G. &R. T. Ramage 1970. Genetics of a primary trisomic series in barley: identification by protein electrophoresis. Canad. J. Genet. Cytol.12: 490–495.

    Google Scholar 

  • Moore, D. M. 1959. Population studies onViola lactea Sm. and its wild hybrids. Evolution13: 318–332.

    Article  Google Scholar 

  • Ornstein, L. 1964. Disc electrophoresis. I. Background and theory. Ann. New York Acad. Sci.121: 321–349.

    Article  CAS  Google Scholar 

  • Scandalios, J. G. 1965. Subunit dissociation and recombination of catalase isozymes. Proc. Natl. Acad. U.S.A.53: 1035–1040.

    Article  CAS  Google Scholar 

  • — 1969. Genetic control of multiple molecular forms of enzymes in plants: a review. Biochem. Genet.3: 37–79.

    Article  CAS  Google Scholar 

  • Selander, R. K. 1970. Behavior and genetic variation in natural populations. Amer. Zool.10: 53–66.

    CAS  Google Scholar 

  • Shepherd, K. W. 1968. Chromosomal control of endosperm proteins in wheat and rye, pp. 86–96.In: K. W. Finlay & K. W. Shepherd [eds.], Proc. Third International Wheat Genetics Symposium. New York: Plenum. 479 pp.

    Google Scholar 

  • Stephens, S. G. 1949. The cytogenetics of speciation inGossypium. I. Selective elimination of donor parent genotype in interspecific backcrosses. Genetics34: 627–637.

    Google Scholar 

  • Turner, B. L. 1970. Molecular approaches to population problems at the intraspecific level, p. 187–205.In: J. B. Harborne [ed.], Phytochemical Phylogeny. New York: Academic Press 335 pp.

    Google Scholar 

  • Vaughan, J. G., A. T. Waite, D. Boulter, &S. Walters 1966. Comparative studies of the seed proteins ofBrassica campestris, Brassica oleracea, andBrassica nigra. J. Expt. Bot.17: 332–343.

    Article  CAS  Google Scholar 

  • — &K. E. Denford 1968. An acrylamide gel electrophoretic study of the seed proteins ofBrassica andSinapis species, with special reference to their taxonomic value. J. Exp. Bot.19: 724–732.

    Article  CAS  Google Scholar 

  • Wall, J. R. 1968. Leucine aminopeptidase polymorphism inPhaseolus and differential elimination of the donor parent genotype in interspecific backcrosses. Biochem. Genet.2: 109–118.

    Article  PubMed  CAS  Google Scholar 

  • — 1971. Genetic control of leucine aminopeptidase and esterase isozymes in the interspecific crossCucurbita ecuadorensis XC. maxima. Biochem. Genet.5: 223–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, D.A., Schaal, B.A. Seed protein polymorphism in Phlox pilosa (Polemoniaceae). Brittonia 24, 46–56 (1972). https://doi.org/10.2307/2805546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.2307/2805546

Keywords

Navigation