Skip to main content
Log in

Evaluating the progress of restored cordgrass (Spartina foliosa) marshes: Belowground biomass and tissue nitrogen

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We report the first data on belowground tissue mass and nitrogen (N) concentration forSpartina foliosa in southern California, assessing one natural and two constructed marshes on San Diego Bay. Biomass at the natural marsh was low compared to that of otherSpartina spp., but higher than values reported forS. foliosa in northern California. In sandy constructed marshes planted 5 and 10 years before this study,S. foliosa had lower belowground tissue N, lower N crop (%N×biomass), and shallower roots than in the adjacent natural marsh. We took advantage of a 2-yr, large-scale fertilization project being performed in the older constructed marsh and examined biomass and N storage after N additions. Although there was a trend toward N accumulation with fertilization, N crop remained at approximately 50% of natural marsh levels, unlike the large aboveground responses to N addition in our previous studies. Lower belowground reserves help to explain poor aerial growth in the created marshes and suggest the need for finer sediments (with greater potential for holding and supplying nutrients) to sustain (S. foliosa. While fine sediments are beginning to accumulate on the surface of the created marshes, vertical accretion is more likely to shift the plant community toward other species than to enhanceS. foliosa growth. We suggest salvaging and importing fine, organic marsh sediments or providing organic amendments to establish proper substrate conditions. Overexcavating and allowing fine sediments to accumulate remains an option, although the time scale is unpredictable due to the stochasticity of accretion events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abrahamson, W. G., andH. Caswell. 1982. On the comparative allocation of biomass, energy and nutrients in plants.Ecology 63:982–991.

    Article  Google Scholar 

  • Anderson, I. C., C. R. Tobias, B. B. Neikirk, andR. L. Wetzel. 1997. Development of a process-based nitrogen mass balance model for a Virginia (USA)Spartina alterniflora salt marsh: Implications for net DIN flux.Marine Ecology Progress Series 159: 13–27.

    Article  Google Scholar 

  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particles size analyses of soils,Agranomy Journal 54:464–465.

    Google Scholar 

  • Boyer, K. E., andJ. B. Zedler. 1996. Damage to cordgrass by scale insects in a constructed salt marsh: Effects of nitrogen additions.Estuaries 19:1–12.

    Article  CAS  Google Scholar 

  • Boyer, K. E., andJ. B. Zedler. 1998. Effects of nitrogen additions on the vertical structure of a constructed cordgrass marsh.Ecological Applications 8:692–705.

    Article  Google Scholar 

  • Boyer, K. E., andJ. B. Zedler. 1999. Nitrogen addition could shift plant community composition in a restored California salt marsh.Restoration Ecology 7:74–85.

    Article  Google Scholar 

  • Boyer, K. E., J. B. Zedler, S. Phinn, G. D. Williams, G. B. Noe, S. Trnka, and B. Fink. 1996. The Status of Constructed Wetlands at Sweetwater Marsh National Wildlife Refuge. Annual Report to the California Department of Transportation and the U.S. Fish and Wildlife Service, Pacific Estuarine Research Laboratory, San Diego, California.

  • Broome, S. W., E. D. Seneca, andW. W. Woodhouse. 1986. Long-term growth and development of transplants of the saltmarsh grassSpartina alterniflora.Estuaries 9:63–74.

    Article  Google Scholar 

  • Cahoon, D. R., J. C. Lynch, andA. N. Powell. 1996. Marsh vertical accretion in a southern California estuary, U.S.A..Estuarine, Coastal and Shelf Science 43:19–32.

    Article  CAS  Google Scholar 

  • Callaway, J. C., andM. N. Josselyn. 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in south San Francisco Bay.Estuaries 15:218–226.

    Article  Google Scholar 

  • Cantilli, J. F. 1989. Sulfide phytotoxicity in tidal salt marshes. Thesis, San Diego State University, San Diego, California.

    Google Scholar 

  • Capehart, A. A., andC. T. Hackney. 1989. The potential role of roots and rhizomes in structuring salt-marsh benthic communities.Estuaries 12:119–122.

    Article  Google Scholar 

  • Chapin III,F. S., E. D. Schulze, andH. A. Mooney. 1990. The ecology and economics of storage in plants.Annual Review of Ecology and Systematics 21:423–447.

    Article  Google Scholar 

  • Craft, C. B., S. W. Broome, andE. D. Seneca. 1988. Nitrogen. phosphorus and organic carbon pools in natural and transplanted marsh soils.Estuaries 11:272–280.

    Article  CAS  Google Scholar 

  • Craft, C. B., J. Reader, J. N. Sacco, andS. W. Broome. 1999. Twenty-five years of ecosystem development of constructedSpartina alterniflora (Loisel) marshes.Ecological Applications 9: 1405–1419.

    Article  Google Scholar 

  • Dai, T., andR. G. Wiegert. 1996. Ramet population dynamics and net aerial productivity ofSpartina alterniflora.Ecology 77: 276–288.

    Article  Google Scholar 

  • DeLaune, R. D., andS. R. Pezeshki. 1988. Relationship of mineral nutrients to growth ofSpartina alterniflora in Louisiana salt marshes.Northeast Gulf Science 10:55–60.

    Google Scholar 

  • Dong, M., andH. de Kroon. 1994. Plasticity in morphology and biomass allocation inCynodon dactylon, a grass species forming stolons and rhizomes.Oikos 70:99–106.

    Article  Google Scholar 

  • Eberhardt, L. L., andJ. M. Thomas. 1991. Designing environmental field studies.Ecological Monographys 61:53–73.

    Article  Google Scholar 

  • Gallagher, J. L. 1974. Sampling macro-organic matter profiles in salt marsh plant root zones.Soil Science Society of America Proceedings 38:154–155.

    Google Scholar 

  • Gallagher, J. L. 1975. Effect of an ammonium nitrate pulse on the growth and elemental composition of natural stands ofSpartina alterniflora andJuncus roemerianus.American Journal of Botany 62:644–648.

    Article  CAS  Google Scholar 

  • Gallagher, J. L., andR. W. Howarth. 1987. Seasonal differences inSpartina recoverable undergrund reserves in the Great Sippewissett Marsh in Massachusetts.Estuarine, Coastal and Shelf Science 25:313–319.

    Article  Google Scholar 

  • Gallagher, J. L., andF. G. Plumley. 1979. Underground biomass profiles and productivity in Atlantic coastal marshes.American Journal of Botany 66:156–161.

    Article  Google Scholar 

  • Gee, G. W., andJ. W. Bauder. 1986. Particle-size analysis, p. 383–411.In A. Klute (ed.), Methods of Soil Analysis: Part I: Physical and Mineralogical Methods. American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Good, R. E., N. E. Good, andB. R. Frasco. 1982. A review of primary production and component, p. 139–157.In V. S. Kenndy (ed.), Estuarine Comparisons. Academic Press, New York.

    Google Scholar 

  • Gross, M. F., M. A. Hardisky, P. L. Wolf, andV. Klemas. 1991. Relationship between aboveground and belowground biomass ofSpartina alterniflora (smooth cordgrass).Estuaries 14: 180–191.

    Article  Google Scholar 

  • Hackney, C. T., andA. A. de la Cruz. 1986. Belowground productivity of roots and rhizomes in a giant cordgrass marsh.Estuaries 9:112–116.

    Article  Google Scholar 

  • Haltiner, J., J. B. Zedler, K. E. Boyer, G. D. Williams, andJ. C. Callaway. 1997. Influence of physical processes on the design, functioning and evolution of restored tidal wetlands in California (USA).Wetlands Ecology and Management 4:73–91.

    Article  Google Scholar 

  • Hargis, T. G., andR. R. Twilley. 1994. Improved coring device for measuring soil bulk density in a Louisiana deltaric marsh.Journal of Sedimentary Research Section A: Sedimentary Petrology and Processes 64:681–683.

    Google Scholar 

  • Hopkinson, C. S., andJ. P. Schubauer. 1984. Static and dynamic aspects of nitrogen cycling in the salt marsh graminoid,Spartina alterniflora Loisel.Ecology 65:961–969.

    Article  Google Scholar 

  • Hull, R. J., D. M. Sullivan, andR. W. Lytle. 1976. Photosynthate distribution in natural stands of salt water cordgrass.Agronomy Journal 68:969–972.

    CAS  Google Scholar 

  • Klimes, L., J. Klimesova, andJ. Osbornova. 1993. Regeneration capacity and carbohydrate reserves in a clonal plantRumex alpinus: Effect of burial.Vegetatio 109:153–160.

    Article  Google Scholar 

  • Langis, R., M. Zalejko, andJ. B. Zedler. 1991. Nitrogen assessments in a constructed and a natural salt marsh of San Diego Bay, California.Ecological Applications 1:40–51.

    Article  Google Scholar 

  • LaSalle, M. W., M. C. Landin, andJ. G. Sims. 1991. Evaluation of the flora and fauna of aSpartina alterniflora marsh established on dredged material in Winyah Bay, South Carolina.Wetlands 11:191–208.

    Google Scholar 

  • Lindau, C. W., andL. R. Hossner. 1981. Substrate characterization of an experimental marsh and three natural marshes.Soil Science Society of America Proceedings 45:1171–1176.

    CAS  Google Scholar 

  • Livingstone, D. C., andD. G. Patriquin. 1981. Belowground growth ofSpartina alterniflora Loisel: Habit, functional biomass and non-structural carbohydrates.Estuarine, Coastal and Shelf Science 12:579–588.

    Article  Google Scholar 

  • Louahlia, S., J. H. MacDuff, A. Ourry, M. Humphreys, andJ. Boucaud. 1999. Nitrogen reserve status affects the dynamics of nitrogen remobilization and mineral nitrogen uptake during recovery of contrasting cultivars ofLolium perenne from defoliation.New Phytologist 142:451–462.

    Article  CAS  Google Scholar 

  • Lytle, R. W. andR. J. Hull. 1980. Annual carbohydrate variation in culms and rhizomes of smooths cordgrass (Spartina alterniflora Loisel).Agronomy Journal 72:933–942.

    CAS  Google Scholar 

  • Mahall, B. E., andR. B. Park. 1976. The ecotone betweenSpartina foliosa Trin. andSalicornia virginica L. in salt marshes of northern San Francisco Bay: I. Biomass and production.Journal of Ecology 64:421–433.

    Article  Google Scholar 

  • Millard, P. 1988. The accumulation and storage of nitrogen by herbaceous plants.Plant, Cell and Environment 11:1–8.

    Article  CAS  Google Scholar 

  • Morris, J. T., andB. Haskin. 1990. A 5-yr record of aerial primary production and stand characteristics ofSpartina alterniflora.Ecology 7:2209–2217.

    Article  Google Scholar 

  • Osgood, D. T., andJ. C. Zieman. 1993. Factors controlling above-groundSpartina alterniflora (smooth cordgrass) tissue element composition and production in different-age barrier island marshes.Estuaries 16:815–826.

    Article  CAS  Google Scholar 

  • Ourry, A., T. H. Kim, andJ. Boucaud. 1994. Nitrogen reserve mobilization during regrowth ofMedicago sativa L: Relationships between their availability and regrowth yield.Plant Physiology 105:831–837.

    CAS  Google Scholar 

  • Phinn, S. R., D. A. Stow, andJ. B. Zedler. 1996. Monitoring wetland habitat restoration in southern California using airborne multispectral video data.Restoradion Ecology 4:412–422.

    Article  Google Scholar 

  • Roman, C. T., andF. C. Daiber. 1984. Aboveground and below-ground primary production dynamics of two Delaware Bay tidal marshes.Bulletin of the Torrey Botanical Club 111:34–41.

    Article  Google Scholar 

  • Schubauer, J. P., andC. S. Hopkinson. 1984. Above-and below-ground emergent macrophyte production and turnover in a coastal marsh ecusystem, Georgia.Limnology and Oceanography 29:1052–1065.

    Google Scholar 

  • Swift, K. L. 1988. Salt marsh restoration: Assessing a sourthern California example. Thesis, Diego State University, San Diego, California.

    Google Scholar 

  • Thornton, B., P. Millard, andE. I. Duff. 1994. Effects of nitrogen supply on the source of nitrogen used for regrowth of laminae after defoliation of four grass species.New Phytologist 128:615–620.

    Article  Google Scholar 

  • Thornton, B., P. Millard, E. I. Duff, andS. T. Buckland. 1993. The relative contribution of remobilization and root uptake in supplying nitrogen after defoliation for regrowth of laminae in four grass species.New Phytologist 124:689–694.

    Article  CAS  Google Scholar 

  • Tripathi, S. K., andK. P. Singh. 1994. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics.Journal of Applied Ecology 31:109–124.

    Article  Google Scholar 

  • Valiela, I., J. M. Teal, C. Cogswell, J. Hartman, S. Allen, R. Van Etten, andD. Goehringer. 1985. Some long-term consequences of sewage contamination in salt marsh ecosystems. p. 301–316.In P. J. Godfrey, E. R. Kaynor, S. Pelczarski, and J. Benforado (eds.) Ecological Consideration in Wetland Treatment of Municipal Wastewater. Van Nostrand Reinhold. New York.

    Google Scholar 

  • Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Productivity and dynamics of experimentally enriched salt marsh vegetation: Belowground biomass.Limnology and Oceanography 21: 245–252.

    Article  Google Scholar 

  • White, L. M. 1973. Carbohydrate reserves of grasses: A review.Journal of Range Management 26:13–18.

    Article  CAS  Google Scholar 

  • White, D. S., andB. L. Howes. 1994. Long-term15N-nitrogen retention in the vegetated sediments of a New England salt marsh.Limnology and Oceanography 39:1878–1892.

    Article  Google Scholar 

  • Williams, P. B. 1986. Hydrology in coastal wetland restoration design. p. 329–336.In J. A. Kusler, M. L. Quammen, and G. Brooks (eds.), Proceedings of the National Wetland Symposium: Mitigation of Impacts and Losses, New Orleans, Louisiana, October 8–10, 1986. Association of State Wetland Managers, New York.

    Google Scholar 

  • Williams, P. B., andJ. L. Florsheim. 1994. Designing the Sonoma Baylands project.Coast and Ocean 10:19–27.

    Google Scholar 

  • Zedler, J. B. 1977. Salt marsh community structure in the Tijuana Estuary, California.Estuarine and Coastal Marine Science 5:39–53.

    Article  Google Scholar 

  • Zedler, J. B. 1983. Freshwater impacts in normally hypersaline marshes.Estuaries 6:346–355.

    Article  Google Scholar 

  • Zedler, J. B. 1993. Canopy architecture of natural and planted cordgrass marshes: Selecting habitat evaluation criteria.Ecological Applications 3:123–138.

    Article  Google Scholar 

  • Zedler, J. B., andJ. C. Callaway, 1999. Tracking wetland restoration: Do mitigation sites follow desired trajectories?.Restoration Ecology 7:69–73.

    Article  Google Scholar 

Sources of Unpublished Materials

  • Pacific estuarine research laboratory (PERL). San Diego State University, 6495 Alvarado Road, Suite 106, San Diego, California 92182-1870.

  • Seliskar, D. unpublished data. University of Delaware, College of Marine Studies, Halophyte Biology Laboratory, 700 Pilottown Road, Lewes, Delaware 19958.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharyn E. Boyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, K.E., Callaway, J.C. & Zedler, J.B. Evaluating the progress of restored cordgrass (Spartina foliosa) marshes: Belowground biomass and tissue nitrogen. Estuaries 23, 711–721 (2000). https://doi.org/10.2307/1352897

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352897

Keywords

Navigation