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Abstract 
In this work, we focused on reducing the amount of image data to 
be sent by extracting and progressively sending prominent image 
features to high-performance computing systems taking into 
consideration the right amount of image data required by object 
identification application. We demonstrate that with our technique 
called Progressive Object Detection over a Lossless Network using 
Fragmented DCT Coefficients (Proficient), object identification 
applications can detect objects with at least 70% combined 
confidence level by using less than half of the image data.  
Keywords: 
DCT, Image Recognition, Object Recognition, DCT Coefficients, 
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1. Introduction 
 

On a system level, there are two main approaches to 
deploying image recognition applications. The cutting-edge 
and advanced way is to use Edge Computing concepts to 
perform all image processing techniques on the edge side 
(Camera) and make it smarter and AI capable. The second 
classic way is to push all media data to be processed into a 
centralized location. Image processing is performed at a 
centralized location with high-performance processing 
machines. There are contradictory comparison results 
between the two approaches, and each has its pros and cons. 
Taking the communication overhead for example, it is 
obvious that the centralized approach has a huge 
communication overhead compared to the edge approach 
due to the massive amount of data that needs to be 
transported from cameras to the centralized processing 
location. 

In this paper, we are introducing the “Progressive 
Object Detection using Fragmented DCT Coefficients 
(Proficient) “mechanism to help mitigate the 
communication overhead problem for centralized image 
processing systems. Using the proposed method, a 50% 
reduction of communication overhead cost is achieved 
without affecting the recognizability of the taken image at 
the centralized processing location. In other words, 
Proficient was able to achieve 50% cost of transmitting 
images to the central location while maintaining 70% of the 
image quality and the objects to be detected from the image. 
 

 

 
Figure 1: Two Approaches to Implement Object Detection 
Application. Left Camera Nodes are Equipped with AI models to 
Perform Image Recognition on the Edge, Right Camera Nodes 
Transmit Full Data to a Centralized Location for Image Processing 

The proposed Proficient mechanism works as follows 
(Figure 2). 

1. Encoding the image into a format that is suitable 
for progressive image processing applications. 

2. Fragmenting and sending the encoded image in a 
way that critical image data is sent sooner than less 
critical image data. 

3. Receiving and defragmenting the image data 
fragments at the high-performance image 
processing unit (HP-IPU). 

4. Decoding the received image data, progressively. 
5. Providing object detection quality feedback to the 

fragmentation module. If a certain quality is 
achieved, no additional data is required for the 
image. 

 

 
  

Figure 2: Proficient Basic Mechanism 

More details will be given in Section II, Figure 3.  
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024 
 

 

52

 

2. Methodology 

 
 

 
 
Figure 3: Detailed Diagram Explaining Proficient Working 
Mechanism 

a. Flow at Camera Node 

1. After an image is captured at the camera node, it 
will be encoded with discrete cosine transform 
(DCT) to achieve a high level of image 
compression.  DCT expresses signals in terms of a 
sum of cosine functions oscillating at different 
frequencies, both in horizontal and vertical 
directions as a result a 2-D matrix of DCT 
coefficients is generated for each image captured.  

2. Since this mechanism is a lossy mechanism, DCT 
coefficients below a certain threshold will be 
eliminated. The effect of elimination of these 
coefficients is very minimal to the image quality. 
However, dropping these coefficients reduces the 
amount of required transmitted data to the receiver. 
Network traffic is reduced as a result.  

3. DCT produces coefficients in floating point format. 
Quantization is carried out to convert them from 
floating point to fixed point numbers that can easily 
fit in network packets. Quantization is also lossy. It 
further reduces the size of data to be transmitted.  

 
Figure 4: Received Image 2D DCT coefficient Matrix 

After DCT and quantization, Figure 4 depicts a certain 
pattern in which DCT coefficients are arranged. The 
coefficient of frequencies near the origin has higher energy. 
Whereas, as the distance of coefficients of frequencies from 
the origin increases, their energy becomes less and lesser. 
Higher energy coefficients contribute to more variations in 
the image. Lower frequency coefficients contribute to lesser 
variations in the image. Hence, coefficients near the origin 
are more crucial for the image quality than the ones further 
away from the origin. 

 
Figure 5: Zig-Zag selection of 2-D Coefficients for Linear Array 

4. To transmit the 2-D coefficient matrix, the sender 
converts it into a linear array ensuring that higher 
energy coefficients are selected first. This can be 
done by selecting 2-D coefficients in a zig-zag 
manner as shown in Figure 5. As shown in the 
figure, the left box shows the indexes of the 2-D 
coefficients. The center box shows the zig-zag 
order in which coefficients would be selected. 
Hence, from the 2-D matrix on the left of the figure, 
we would get a linear array depicted on the right 
side of the figure. This step completes the encoding 
stage of the image, depicted in the leftmost box in 
Figure 3.  
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5. The next stage consists of breaking up the linear 
array of coefficients into fragments that fit inside a 
network packet. The last step of the previous stage, 
the zig-zag selection of coefficients, arranged the 
coefficients in a linear array starting with a 
coefficient of frequencies with the highest power 
followed by coefficients of lesser power and so on. 
Hence, the first fragment of the linear array would 
contain coefficients of frequencies with the highest 
powers. The second fragment will contain 
coefficients of frequencies with lesser power and so 
on.  

6. At this stage, Proficient packetizes each fragment 
of the linear array and transmits them. As a result, 
the first packet to be transmitted will contain 
information that would contribute to the maximum 
quality of the received image. The second packet 
would contain the second-highest contribution to 
the quality of the received image and so on. This 
stage of Proficient keeps on sending further 
fragments until the preset number of packets has 
been sent. After this, the camera node restarts work 
on the next image starting at the first step.  

b. Flow at Processing Unit  

1. Packets containing the image’s coefficient are 
received sequentially.  

2. From each packet, the extracted coefficients are 
used to reconstruct the linear array. The sender 
inserts a fragment number in each packet so that the 
receiver can know where to place the coefficients 
in the placeholder linear array.  

3. Hence, using this fragment number, the receiver 
defragments the received packet and places the 
coefficients into the linear array. After this, it is 
checked if the preset threshold number of packets 
has been received or not. If the threshold has been 
achieved, step 4 is executed. Otherwise, the next 
packet is awaited in step 1.  

4. After the threshold number of packets has been 
received, the linear array is converted into a 2-D 
DCT matrix using a reversed zig-zag operation.  

5. Inverse DCT is carried out to reconstruct the 
received image from the received DCT of the 
image.  

6. The reconstructed image is passed to an object 
recognition algorithm for object detection. 
Objection detection consists of identifying several 
objects in the image as well as their respective 
object identification confidence levels. As the 
number of received packets is above a selected 

threshold, they contribute to recreating a minimal-
quality image that is required for detection by an 
object recognition algorithm. The selection of this 
threshold will be discussed in the experimentation 
section.  

7. The application is notified about the results and the 
process restarts from step 1. 

 
Figure 6: Object detection methodology 

 

3. Experiments  

 
To evaluate the effectiveness of Proficient, our setup 

included a combination of tools. We used the YOLOv3 
architecture for image recognition. We selected 100 
different images from the Microsoft COCO dataset [1]. We 
used a Linux Machine powered by an NVIDIA TitanXP 
GPU to detect objects using YOLOv3. These images contain 
different types of objects ranging from 1 to 14. Figure 6 
shows the methodology used in detecting objects from input 
images. The input image is 640 x 480 with an RGB scale. 
The images are converted into grayscale before applying the 
image detection algorithm.  We mark all the objects detected 
by YOLOv3 as the ground truth of that image. 
 

 
Figure 7: Sample Output of YOLOv3 on a random image 

We define the combined confidence level by summing the 
confidence level of each detected object divided by the total 
number of objects. This is shown in Equation 1. For 
simplicity, this paper mentions combined confidence level 
as a percentage without units.  
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        (1) 

Where, 
 CCL is combined confidence level, 
 N is the number of objects in the image, 
 𝐶௞ is the confidence level of object k. 
 

For the image shown in Figure 7, YOLOv3 detected 4 
zebras: two with a confidence level of 100 %, one with a 
confidence level of 97 %, and one with a confidence level of 
40 %. Hence, using equation (1) for combined confidence 
level (CCL), we can say that the combined confidence level 
of YOLOv3 is: (1 + 1 + 0.97 + 0.4) x 100 = 84.25 %. 
                                     4 
We subjected each image to YOLOv3 to find ground truth. 
After finding the ground truth for all the grayscale images, 
we sent all images using Proficient.  

The third step carried out by the sender depicted in 
Figure M3 of Proficient eliminates low energy coefficients. 
It is expected that this reduction in data to be transmitted is 
achieved by this step. This paper focuses on evaluating and 
improving this step. We want to eliminate as many low 
energy coefficients as we can without compromising the 
results of object detection. Therefore, through 
experimentation, we want to find a generalized threshold of 
image data required to be sent to HP-IPUs that can be used 
to detect objects with a certain predefined combined 
confidence level.  

The resolution of each image was 1280x720 grayscale 
with one byte per pixel, However, each DCT coefficient 
calculated was larger. Some precision was lost when each 
DCT coefficient was encoded in two bytes due to truncation 
of result bits introducing quantization error. This loss is 
unavoidable, but acceptable in lossy techniques such as DCT. 
The truncation should be small enough so that it causes little 
loss in quality when inverse DCT is taken in the latter step 
of Proficient. The optimal number of bits required to 
represent each DCT coefficient is out-of-scope in this paper 
and will be addressed in future research. As mentioned 
before, we used two bytes to store each DCT coefficient. 

Note that to find this threshold, packets containing 
coefficients were sent to the HP-IPU over a lossless network. 
With this, we explain how ground truth is established and 
the minimum number of packets (threshold) is selected. 

c. Finding Ground Truth 

In the first set of experiments, we first converted the original 
100 test images to grayscale with a resolution of 1280x720 
and directly passed them to YOLOv3 without passing them 

through Proficient. The goal of this stage was to establish the 
ground truth for each image. 

Figure 8 in the next section shows the results of the 
ground truth experiments. The bins on the x-axis represent 
the number of objects in an image. As the 100 images were 
chosen randomly, the number of detectable objects in them 
was not known. The idea is to entirely rely on YOLOv3 for 
detection with and without Proficient.  

The number at the top of the bar at the bin represents the 
number of images in the dataset that had that many objects. 
For example, there is no bar for the bin of 0 objects. 
Therefore, none of the images were empty. The bar of the 
bin with 1 object has 7 at the top of the bar. This means that 
there were 7 images in the dataset that contained 1 object. 
Similarly, the bar representing 2 objects has the number 14 
on its top. This means that there were 14 images in the 
dataset that had 2 objects each. In the same way, we can see 
that the dataset included only 3 images that had 16 objects 
in them. As the images were selected at random from the 
database, the number of objects in each image was not 
controlled in this experiment.  

d. Finding Coefficients Threshold  

To find the number of coefficients required to detect all 
objects with a 70% combined confidence level, a 
modification was made to the Proficient receiver end as 
shown in Figure M3. Feedback is sent from the image 
detection module to the packetizer module so that we can 
log the number of packets required for the threshold.  
 
At the processing unit, a linear array is created and filled 
with zeros. When a packet is received, the following steps 
are performed: 

 A packet is received from the sender.  
 Coefficients are extracted from the received packet so 

that they can be placed in the linear array at the position 
defined by fragment number.  

 The received coefficients are added to the linear array. 
 The inverse zigzag is performed on the linear array to 

reconstruct the 2-D DCT. Note that this step is carried 
out after each packet is received because we want to find 
the threshold of packets that gives us a 70 % combined 
confidence level at step 6 of the HP-IPU with the 
number of objects equal to ground truth at step 7 of the 
HP-IPU. This contrasts with the original Proficient 
implementation discussed in the previous section where 
we wait for the threshold number of packets to be 
received.  

 Inverse DCT has been applied to the received 
coefficient so far.  
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 The reconstructed image is then fed to YOLOv3 to 
detect the number of objects in it. YOLOv3 detects 
objects along with some confidence level.  

 If the combined confidence level of the detections in the 
reconstructed image crosses 70 %, the number of 
objects detected by YOLOv3 is compared to the ground 
truth established in the first set of experiments.  

o If the detected number of objects is achieved with a 70 % 
combined confidence level, feedback is sent to the 
packetizer module of the camera node so that it logs the 
number of packets that were sent along with the PSNR 
of the reconstructed image (Step 7 of the sender). PSNR 
is calculated and logged to see its effect due to the 
number of packets received. Note that the number of 
packets that it had sent is proportional to the threshold 
we are looking for. This feedback also indicates that 
further packets would most likely not impact the results 
of object identification. When this feedback is received 
by the sender, it stops sending further fragments of the 
linear array to the receiver, because more fragments 
would not contribute enough to improve the image 
quality. Moreover, the feedback from the receiver 
signifies that it has successfully identified objects in the 
received image. This also signals the sender to start 
processing the next image. 

 
o If the detected number of objects is not the same, the 

next packet from the packetizer module is awaited. 
Once received, step 1 onwards is executed.  This 
process was carried out for all 100 images. For each 
image, two statistics were recorded. The number of 
packets required to achieve ground truth with a 70 % 
combined confidence level and the PSNR level at that 
threshold.  

4.  Results Explanation  

Figure E1 shows the results of the experiments carried 
out. As discussed earlier, the x-axis bins represent the 
number of objects in the image, whereas the number on top 
of each bar represents the number of images of that object 
count used in the experiment. The height of the bar 
represents the number of packets required to detect all 
objects with a minimum of 70 % combined confidence level.  

To packetize the entire 2-D DCT array, 480 packets of 
1000 bytes each, were required. As shown in Figure 7, for 
the 7 images that contained one object, an average of 5.86 
packets were required. The average PSNR for the 7 images 
was 24.8. For the 14 images that contained 2 objects, an 
average of 13.28 packets were required. The average PSNR 

was 22.6. These statistics are shown for each set of images 
in Figure 7.  

 

Figure 8: Stage 1 of Proficient Experiments 

The figure also shows that as the number of objects in 
an image increase, a higher number of packets are required 
to achieve full object detection with a minimum of 70 % 
combined confidence level. The figure also shows that the 
PSNR of received images has no relation to the number of 
objects in the image. On average, a PSNR over 22 has shown 
good detection results with 70 % confidence. 

As mentioned before, the total number of packets 
containing DCT coefficients per image was 480. Using 
experiments, we wanted to identify the threshold of packets 
required to detect objects efficiently. For one object per 
image, we saw that 5.86 packets were required. This means 
that only 6 packets out of 480 were enough to detect the 
object in the images with a 70 % combined confidence level. 
Similarly, 14 packets per image for 2-object images were 
enough, and so on. From Figure 8, it is seen that a maximum 
of 156 packets were required to detect all 17 objects in each 
of the 3 images used. Therefore, with 156/480 = 32.25% of 
the coefficients, we were able to detect all objects in the 100 
random images.    

With the expectation that less than 50 % of the 
coefficients would be enough to identify all objects in all 
images, we wanted to analyze the effect of each set of 
coefficients on the final results. Hence, taking the above 
variation into account, we want to fine-tune the threshold. 
For this, we carried out another set of experiments explained 
in the next sub-section. 

5. Analysis of the number of Coefficients 
Required to Detect Objects with 
Combined Confidence of 70 %  

One image was selected at random to see the results of 
its reconstruction and detection from packet 110 to packet 
200. Note that the number of packets is analogous to the 
number of coefficients of the image’s DCT. Figure 9 shows 
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the results of an experiment carried out on a randomly 
selected image.  

 

Figure 9: Experiment Results: Understanding the relation of 
packets required for image reconstruction with Combined 
Confidence Level and PSNR 

The first Figure 9 (a) shows the number of objects detected 
by YOLOv3 from images reconstructed from 110 packets, 
120 packets, 130 packets, and up to 200 packets. Figure 9 (b) 
shows the combined confidence level output of YOLOv3 for 
the objects detected per image. Finally, Figure 9 (c) shows 
the PSNR of reconstructed images.  

Number of Packets (Total 480) 100 110 120 130 140 150 160 170 180 190 200 

Corresponding Threshold 21% 23% 25% 27% 29% 31% 33% 35% 38% 40% 42% 
 

 

Figure 10: Progression of Combined Confidence Level from 21 % to 41 % Coefficients 
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It is seen that when the image reconstructed with 110 

packets is passed to YOLOv3, 13 objects were detected with 
a combined confidence level of 85 %. Note that the ground 
truth for this image was 15 objects. The PSNR of the same 
image was 24.8.  

With the image reconstructed with 120 packets, still 13 
objects were detected but the combined confidence level 
decreased. Analyzing the individual objects in the selected 
image, it was seen that with 120 packets, some objects 
previously detected with a certain confidence were not 
detected at all, whereas some new objects were detected with 
a lower confidence level. Hence, this caused a decrease in 
the combined confidence level.  

With the image reconstructed with 130 packets, the 
object count increased to 14 with a slight change in the 
combined confidence level. In this case, one of the 
previously detected and then undetected objects was 
detected again. The increase in PSNR was almost constant 
in this case as well.   

As the number of packets increased to 160, the number 
of objects detected became the same as ground truth. The 
combined confidence level of all objects detected became 
77 %. The PSNR gradually increased to 26.3. 

Above 160, the number of objects detected remains the 
same. The combined confidence level of all the objects in 
the image also remains around 77 % whereas the PSNR 
increases. Hence, for this image 160 out of 480 packets was 
enough to detect all objects with more than 70 % combined 
confidence level.    

The next set of experiments was carried out to check 
the accuracy of Proficient with the following set of 
thresholds:  

Figure 10 shows how the combined confidence level 
fluctuates as we increase the threshold of coefficients from 
21 % to 41 %. As explained in the previous sub-section, the 
combined confidence level may decrease as the number of 
coefficients increases, until we have enough coefficients to 
identify all objects with respect to ground truth. The above 
figure shows that as the number of coefficients reached 41% 
almost all objects in all images had been identified with a 
combined confidence level above 70 %, with the exception 
of images 36, 54, 75, and 93. Therefore, we can confidently 
conclude that with a max of 41 % coefficients, Proficient can 
detect all objects with a combined confidence level of 70 % 
in 96 out of 100 randomly selected test images.   

 

6. Related work 

Many people in the literature proposed methods to 
compress the images before transmission and apply certain 
AI algorithms to analyze the compressed images. They 
compare the accuracy of object detection with and without 
compression techniques. A similar approach is presented by 
Lin et al. [2] for real-time application data compression. 
They proposed a hybrid approach for image compression in 
which they used the regional information of the image as 
well as the temporal information. This approach reduces the 
significant number of temporal redundancies.  

Zhou et al. [3] proposed an image compression 
technique for unified object detection. Their approach 
reduces the extra computational overhead of a convolutional 
network. The method merges the image sub-sampling and 
object detection in one step as compared to the conventional 
approach of object detection in which both act as a separate 
module. Choi et al. [4] used quantization of data and 
encoded it using a PNG encoder. Using this approach, they 
compressed the data before uploading it to the cloud. They 
used VOC2007 and VOC2012 datasets for model training. 
The results show the impact of lossless compression (after 
the Q-layer) on accuracy.  

Dodge et al. [5] studied the image classification 
performance with and without image compression. They 
compare the performance of deep learning architectures on 
image classification after applying five different types of 
image distortions (i) additive Gaussian noise, (ii) blur via 
convolution using a Gaussian kernel, (iii) contrast reduction 
via blending with a uniform gray image with a varying 
blending factor, (iv) JPEG compression at different quality 
levels (reflected by the Q parameter), and (v) JPEG2000 
compression with a different target peak signal to noise ratio 
(PSNR). The experiments show that the compression 
impacts the performance of classification, but the model 
accuracy did not decrease a lot.  

Goodfellow et al. [6] used deep CNN models to 
investigate object detection by influencing lossy image 
compression. The authors described methods for generating 
additive, seemingly random, noise with low amplitude, 
causing models to classify modified images wrongly. 
Gandor et al. [7] investigate the influence of JPEG 
compression on the performance of CNNs for object 
detection. They analyze the performance by varying the 
compression levels. The plethora dataset that contains 5000 
images having 80 different objects is used in the 
experimentation. For object detection, they investigated nine 
different deep neural models. The results show that the 
precision remained constant regardless of the compression 
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quality. The effect of compression is on the detection of 
small objects.  

Choi et al. [8] developed a bit allocation and rate control 
method to improve the object detection of state-of-the-art 
object detector YOLO9000 [9]. They used the bit allocations 
after the initial convolutional layers of the YOLO model to 

detect the objects more accurately. The results show the 7%-
bit savings by using the proposed strategy and also it 
accurately detects and classifies the objects. Table 1. Shows 
the summary of related work with the key findings. 

 

 
Table 1: Summary of Key Findings from Literature 

Author Proposed System Compression 
Technique 

Data set Model 
Investigated 

Comparison 
Metrics 

Application 

Lin et al. 
[2] 

Segmentation algorithm 
(SPEC), Lossless 
coding method 
 

Compound Image 
Compression 

Computer screen images 
(webpages, wallpapers, 
and characters) 

- PSNR 
(JPEG, JPEG-
2000, SPEC) 

Real-time 
applications 

Zhou et 
al. [3] 

Compressive 
Convolutional Network 
(CCN) for efficient 
object detection and 
image compression 

Compressive 
Convolutional 
Network 

BSD100 [100 images] 
VOC (2007+2012) 
[21530 images] and 
COCO [200000 images 
with 80 classes] 

YOLOv2 PSNR, 
Coherence 
Measurement 

Embedded 
Systems 

Choi et 
al. [4] 

DEEP FEATURE 
COMPRESSION FOR 
COLLABORATIVE 
OBJECT DETECTION 

quantization of data VOC2007 and 
VOC2012 
(16,551 Images with 20 
Classes) 

YOLO9000 Map Smart Cities 

Dodge et 
al. [5] 

Evaluation of Image 
Quality Affects on 
Image Classification 

Gaussian noise, Blur, 
Contrast Reduction, 
JPEG Compression, 
JPEG2000 
Compression 

ImageNet2012 (1000 
Classes) 

AlexNet 
GoogleNet 

Top 1 Accuracy, 
Top 5 Accuracy 

Surveillance 

Gandor 
et al. [7] 

Impact of Image 
Compression on Object 
Detection Using Deep 
Learning

JPEG compression 
 

plethora dataset (5000 
Images with 80 Classes) 

RetinaNet. 
ResNet50, 
ResNet101, 
ResNetXt 

AP and mAp 
 

Digital 
photography 
and document 
archiving 
Video 
Surveillance 

Choi et 
al. [8] 

High-efficiency 
compression for object 

detection 

bit allocation and rate 
control strategy 

PASCAL VOC 2007 
dataset which has 9963 
images 

YOLO9000 
 

Map surveillance and 
visual analytics 
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