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Summary 
Soft sensors are used to anticipate complicated model parameters 
using data from classifiers that are comparatively easy to gather. 
The goal of this study is to use artificial intelligence techniques to 
design and build soft sensors. The combination of a Long Short-
Term Memory (LSTM) network and Grey Wolf Optimization 
(GWO) is used to create a unique soft sensor. LSTM is developed 
to tackle linear model with strong nonlinearity and 
unpredictability of manufacturing applications in the learning 
approach. GWO is used to accomplish input optimization 
technique for LSTM in order to reduce the model's inappropriate 
complication. The newly designed soft sensor originally brought 
LSTM's superior dynamic modeling with GWO's exact variable 
selection. The performance of our proposal is demonstrated using 
simulations on real-world datasets. 
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1. Introduction 

Soft sensor is a synthetic deductive reasoning 
projection methodology that provides accurately 
manageable characteristics to forecast system parameters 
that are complicated owing to technical and administrative 
constraints, as well as a context in which it occurs. The soft 
sensor aims to create a predictive statistical method among 
accurately manageable quantities and major difficulties set 
of independent, which is used to address the issue that 
precludes readings from being used as product testing signal 
generated. Soft sensor technologies have also been a key 
technological evolution including both academic and 
commercial [1], with soft sensor approaches being used 
more especially in various processes. 

Most parameters in genuine manufacturing 
applications can indeed be evaluated. The assessment 
regularity is significantly small due to technological limits, 
sensory specifications, ambient considerations, etc. Soft 
quantification is an efficient way to objectively convert 
observable characteristics to tougher ones in statistical 
models [2–4]. Neural Networks (NNs) are sophisticated 
approaches for modeling complicated and chaotic systems 

that have already been widely used during soft sensors [5–
7].  In [8], Heidari et al. initiated a separate inter feed-
forward neural network which is more appropriate, in 
existing NN topologies, to estimate boundary layer flow 
roughly comparable viscosity. In [9], Sheela and Deepa 
combined personality maps with MLP to create a 
synthesized approach, which are used to anticipate the wind 
speed of a green power process. Authors in [10] created a 
dynamically recursive network for a soft sensor of 
biological processes. Their implementation to a purification 
acetaldehyde acid extraction technique showed excellent 
efficacy. In [11], throughout the case study, soft sensors 
were created for performance estimation and a different 
style of automated vector autoregressive analyzation has 
been developed based on the network info logistic 
forecasting, that could accurately forecast multimodal 
aberrations. 

Many factors are tracked by online sensors while 
dealing with industrial processes. Some of these variables, 
however, are difficult to monitor. Because of slow hardware 
sensors or laboratory analysis, variables are measured with 
long delays in some circumstances, making real-time 
monitoring of the process impossible. Based on online 
measured variables, inferential models can be developed to 
estimate these difficult-to-measure parameters including 
the use of soft sensors. Figure 1 summarizes their 
functioning principle. 

 

Figure 1: Soft Sensors Functioning Principle 

There is now an expanding theme of using statistics 
machine learning techniques to increase technologies, 
operations, or commodities throughout several 
manufacturing industries for at least ten years [12]. Such 
enhancement potentially manifest in many ways, ranging 
from lower density or intermediate goods usage [13] to 
superior equipment utilization [14, 16] or increasing 
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concentrations of automated processes [17] to greater 
energy reliability. Recently, fighting climate change 
because of stronger burdensome regulations seems to be a 
big factor [18, 19]. 

Furthermore, information gathering required for this 
kind of strategies is fraught with difficulties, including the 
long-term viability of construction equipment: Authorized 
deterioration figure comes from (rarely) 6 to more than 30 
years, based on the location, item of equipment, and 
automotive sector [20]. Additionally, anecdotal evidence 
suggests that, particularly in businesses of all sizes, durable 
systems can last substantially extended in regular usage. As 
a result, much of today’s modern gear was built but that was 
before the data-hunger arose. As a result, it frequently 
lacked at substantially so many of the sensors required to 
gather it. 

Products, on the one hand, are currently inherently 
complex, with interpreted relationships amongst datum 
entries. Datasets, on the other hand, are quantitative 
approach with substantial intermediation distortion and 
unpredictability, making forecasting with traditional NNs 
more difficult. Long Short-Term Memory (LSTM), a 
sophisticated type of NN, was subsequently developed to 
manage sequences dependence [21–23]. Because its 
memory cells can keep their state throughout time and 
standardize the evidence coming in or out of the cell, an 
LSTM network is so much greater for developing long-term 
long-range dependencies. As a result, LSTM networks have 
found success in a variety of domains, including 
meteorological developments [24], traffic forecasting [25], 
human activity identification [26], etc. Because of its 
strengths, LSTM is being used in the construction of soft 
sensors in manufacturing applications. Yuan et al. designed 
a directed recurrent neural network for a soft sensor and 
used two practical industrial scenarios to illustrate the 
effectiveness of the suggested soft sensor [27]. Sun 
suggested a new LSTM network for a soft sensor by 
integrating feature extraction choosing and supervised 
dynamic methodological approaches, and the network was 
demonstrated using a real-world Equilibrium adsorption 
column [28]. 

This work proposes a new soft sensor technique that 
combines LSTM and GWO, with the GWO compressing 
LSTM system parameters. The following is a list of the 
paper's major aspects: 

(1) For LSTM with GWO, a novel feature selection strategy 
is designed. The proposed technique effectively eliminates 
the additional functionality induced by duplicated 
parameter combinations, therefore increasing the modeling 
efficiency of the LSTM.  

(2) The designed soft sensor technique is designed in two 
important manufacturing applications. 

(3) Simulation findings show that the new soft sensor model 
performs better and is more flexible while performing 
feedback control. 

2. Related works 

Various deep neural network techniques using the 
angular velocity signal to calculate ignition characteristics 
are presented in this related work. Several papers (e.g., [27–
29]) predict the flow rate curve first, and then calculate the 
ignition parameters (typically pMax and its placement in the 
rotating angle range) for elements to determine. Other 
papers, such as [17], proposed to calculate and assess 
ignition parameters directly using a neural network. Note 
that we opt the latter strategy. The choice differs greatly in 
terms of which criteria are deemed especially important for 
the effectiveness of the techniques. 

To calculate cylinder pressure, Bennett et al. utilized a 
computational model with a semi integrated moving 
average Arima with level higher (NARX) design [27]. 
Among 1.7° and 4.3°, the standard deviation varied between 
5.3% and 33.6%, due to the operating environment. The 
same scientists improved this result significantly by 
utilizing a period computational model in [14]. The mean 
error fell to just 1.141 percent to 1.323 percent, respectively 
for 1.651° to 3.082°, under the same conditions utilized in 
[27]. As a result, the type of network used in these two 
papers had a significant impact on the techniques' 
effectiveness. In [29], a multilayer perception is presented 
that includes data associated with the air ratio, combustion 
angle, and compressor boost pressure in addition to the rotor 
position signal. The emphasis was on the artificial network's 
structure that had a significant impact on the computation 
effectiveness. 

To calculate injection pressure curves, the authors of 
[28] used a computational model with multilayer perception. 
They did not use the basic rotor position signal, but instead 
translated it into the Fourier transform and evaluated just 
the first 20 overtones, in contrast to earlier research that 
have been using a Radial Basic Function (RBF) network. 
They also employed the structure-borne acoustic signal's 
21st-50th vibrations. As a result, the preparation of the 
given data is the most important aspect of this project. The 
typical errors for pMax and its value in the cranks angle range 
are 3.4% and 1.5 degrees, respectively. 

3. METHODOLOGY 

3.1 Design 

Enterprises hold information in previous records, 
which is traditionally performed by an oversight 
command and information management or Distributed 
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Control System (DCS). Because the modelling can get 
some more insight than what is contained in the data, 
the recorded information should be sufficient to 
capture the entire dynamic behaviour of the system. 
The initial phase of the design involves filtering and 
preparing the data when it has been acquired. This is 
because unfiltered data from databases has well-
known issues including oversampling, outliers, and 
missing data, as well as consistency issues such 
discrepancies, weather conditions, and excessive 
noise. As a result, the designer must treat them with 
care and prepare data so that it may be used in 
subsequent design processes. Clustering method, 
contrast adjustment, feature extraction, and reduction 
are all common pre-processing procedures. 

The sample rates of data obtained in vegetation 
databases are frequently diverse. Convenient 
characteristics are performed automatically utilizing 
various online sources sensors, whereas difficult-to-
measure parameters are tested infrequently, at a 
significant expense, and with long delays, as in the 
case of laboratory analysis. As a result, the previous 
frequently have sufficiently large sample rates, even 
greater than the sampling theorem requires, but the 
later often to be down sampled. High sampling rates 
might result in large datasets with data co integration. 
As a result, re-sampling is required to re-synchronize 
the variables and avoid dealing with large datasets. 

In datasets gathered from different businesses, 
incomplete values and outliers are prevalent issues. 
Peak, fluid saturation, flattening trends, and 
interruptions are examples of the earlier, which arise 
whenever values are absent in a variable's observation; 
the latter are genuinely incongruous data, with the 
bulk of the documented ones deviating substantially 
from the average range of values. Sensor or system 
failures, as well as parameter uncertainties, can both 
cause them. They are normally dealt with either 
eliminating the samples that contain them or by using 
some sort of imputing approach to fill in the missing 
observations. Outlier detection, on the other hand, is a 
difficult operation that can be accomplished using 
statistical techniques like the 3-rule, or the ultimate 
confirmation must be carried out properly by a 
horticultural specialist to minimize anomaly 
concealing (aberration overloading).  

 

 

3.2 Fabrication 

A. Carbon black composite preparation         

For a multitude of conditions, researchers are 
combining the flexibility of silicone polymers with the 
electrical capabilities of conductive filler materials [8]. 
Plasticizers get a high elongation and elastic modulus, 
as well as good moisture levels resistance. 
Furthermore, owing to the critical shortage of 
electrostatic forces, ketones, like other 
macromolecules, are practically conductive at low 
voltage. The proportion of the additional composite 
electrode is among the parameters that defines a 
composite's conductivity and percolation threshold [9]. 
Concentrations that surpass the decomposition 
temperature are premium for ridiculously priced fillers 
like silver nanoparticles and nanomaterials. 
Furthermore, producing a homogenous and durable 
filler distribution is critical for creating the 
infrastructure for electromagnetic transfer, and this 
usually necessitates the use of a polar organic solvent 
to aid dispersion [14]. To optimise this process, 
several dispersion methods [9] and disseminating 
solvents [15] have since been devised. 

Furthermore, it is required to omit the use of the 
disseminating fluid in favour of a relatively easier 
production approach and balanced by raising the filler 
content. The carbon black to Ecoflex ratio was raised 
to 1:6 and blended by hand for a few moments. 
Manufacturing a percentage point superconducting 
laminate with this methodology costs only 0.12 USD, 
saving you an additional 18% over the direction of 
development. This improved conductivity composite 
production system involves no specialised equipment, 
involves only a few moments, and is way more 
efficient than existing methods. 

B. Sensor Fabrication 

Initially, drop a 1 mm thick couple of layers of 
sustainability has been defined material into a mould, 
which is blended 1A:1B by weight. After pouring, 
pressure services required the mixture to remove any 
trapped air. The silicone is cured for around 2 hours at 
70° C. Just after silicone has hardened, it is needed to 
overlay it with a 0.8 mm thick laser-cut pattern. The 
stencil is 2 mm broad, which matches to the sensor's 
width. The laser cutter was employed for convenience, 
but considering the stencil's measurements, it could 
easily have already been made by manually. 
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Figure 2: Fabrication of soft sensor 

Figure 2 depicts the procedure for fabricating single sensors 
by embedding the carbon composite V in Ecoflex gel. We 
start by pouring a 1 mmv thick base layer of Ecoflex rubber 
into a mould, which is then blended 1A:1B by weight. We 
vacuum degas the mixture before to dumping to remove any 
trapped air. We cure the silicone at ambient temperature for 
about 2 hours or use a 70° C oven to speed up the process. 
We use a sensor stencil with a diameter of 0.8 mm to cover 
the rubber after it has hardened. The sensor's width is 2 mm, 
hence the stencil is 2 mm broad. The laser cutter was 
employed for convenience, but considering the stencil's 
proportions, it might have easily been cut via manually. 

3.3 Grey Wolf Optimization 

Grey wolf optimization simulates the intelligent 
behavior of grey wolves, including leadership and hunting 
behaviors. The apex predator is the Grey Wolf (GW), which 
implies that it is at the top of the biological food chain. GWs 
frequently opt to live. The grey wolf lives in a pack of 5 to 
12 members with a rigid social structure. The hierarchy of 
a grey wolf pack is divided into four levels: alpha, beta, 
delta, and omega. Alpha (𝛼) is the first rank in the hierarchy 
and is regarded as the pack's first leader. It oversees all 
decision-making processes, such as pursuing prey, 
approaching prey, and training the entire pack of wolves. 
The second level of the hierarchy is beta (ß), which advises 
the alpha when it passes away. The wolf can be female or 
male, and if the other wolves become old or die, he or she 
will most likely be the better one. 

Omega (ɷ) is the lowest rank of the hierarchy, obeying 
the decisions of the three higher-ranking leaders while also 
ensuring the wolf pack's safety and integrity. In level delta 
(δ), the wolves are supposed to subject, and this level 
dominates. This group includes scouts, elders, and sentinels. 
Scouts keep an eye on the territory lines and warn the pack 
if they are in danger. The following is a mathematical 
representation of the GWO working process: 

Retrieval in the GWO methodology is based on 
the wolf's relocation. Such three wolves are being 
pursued by the x wolves. During the chase, the GW 
circles the quarry. 

3.3.1 Encircling prey 

The encircling behavior of GWO is mentioned in the 
following equation: 

𝐸 ൌ 𝐹𝑋௉ሺ𝑖ሻ׀ െ 𝑋ሺ𝑖ሻ(1)    ׀ 

𝑋ሺ𝑖 ൅ 1ሻ ൌ 𝑋௉ െ 𝐵𝐹    (2) 

Where: 

 i represents the present repetition. 

 B and F are coefficient vectors. 

 Xp represents the Prey’s position vector. 

 X represents the GW’s position vector.  

Vectors B and F are computed as follows: 

𝐵 ൌ 2𝑎 ∗ 𝑟𝑎𝑛𝑑ሺ1 െ 𝑎ሻ    (3) 

𝐹 ൌ 2 ∗ ሺ𝑟𝑎𝑛𝑑 2ሻ    (4) 

Even during searched repetitions, parameter a is 
progressively lowered between 2 to 0; rand1 and rand2 
are procedurally chosen variables in the range of [0, 1]. 

3.3.2 Hunting 

The capacity to recognize prey position aids the 
GW in encircling the prey. The effective quest is led 
through a regular basis. Furthermore, it may play a 
role in hunting behaviors and should be conscious of 
the whereabouts of prey to investigate GW's hunting 
behavior. As a result, the very first top three results 
calculated are saved, and the remaining of the 
evolutionary algorithms are exposed to updates on 
their own positions in relation to the number one 
search agents' whereabouts. We are listing some 
examples: 

𝐸α ൌ ሺ𝐹ଵ𝑋αሻ׀ െ 𝑋5(    ׀(  

𝐸β ൌ ሺ𝐹ଵ𝑋βሻ׀ െ 𝑋6(    ׀(  

𝐸δ ൌ ሺ𝐹ଵ𝑋δሻ׀ െ 𝑋7(           ׀(  

𝑋ଵ െ 𝑋αሺ𝐵ଶ 𝐸α)     (8) 

𝑋ଶ െ 𝑋βሺ𝐵ଶ 𝐸β)     (9) 

𝑋ଷ െ 𝑋δሺ𝐵ଶ 𝐸δ)     (10) 

𝑋ሺ𝑡 ൅ 1ሻ= 
௑ଵ ା ௑ଶ ା ௑ଷ

ଷ
                                                (11) 

Note that β and δ analyze the direction of prey, while 
the other wolves adjust their positions around the 
predators at randomness. The location of prey is then 
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evaluated, and the rest of the wolves randomly update 
their locations around the prey. 

3.3.3 Attacking Prey 

The GW starts the predator hunting procedure 
when the prey stops moving. The range is reduced to 
tapering B from the greatest value to quantitatively 
depict the process of the impending invasion of the 
prey in the direction of the prey. This improves the 
GWO's efficiency per |B| < 1 by pushing the GW to 
assault (exploitation) in the direction of constructing a 
greedy algorithm. 

3.3.4 Search for prey 

GWs usually look for the best candidate by 
looking at the locations of α, β, δ and wolves. They 
disperse (adventure) from one another to look for prey 
and then reunite (utilization) to attack the prey. To 
drive the search agent to diverge from prey, the 
random coefficient vector (B) must be above 1 or 
below –1. Furthermore, the random coefficient vector 
F aids GWO in achieving better random behavior 
during optimization and avoiding local optima. In 
contrast to parameter B, parameter F is lowered in a 
non-linear manner. Option F is required to 
procedurally provide chosen values each time in order 
to emphasize the exploring phase.  

3.4 LSTM model 

The internal hidden state model is maintained by 
the Recurrent Neural Network (RNN) which is a class 
of neural network. The cyclic connection between its 
units is directed by the temporal behavior of the 
arrangement with random length. The long short-term 
memory is also known as the hidden Markov model 
extension. The modeling long-term temporal 
dependencies are achieved by using a non-linear 
transition function. By adding three gates in the RNN 
neuron, the LSTM is extended to the three layers: the 
forget gate neuron, input gate neuron, and output gate 
neuron. The forget gate neuron controls the current 
state whether to forget or not. The output gate neuron 
states the output while the input gate neuron states 
whether the input should be read or not. The sequence 
in the long-term dependencies is learned when these 
gates are enabled. The recurrent hidden layer is 
effectively proliferated with the help of these three 
gates. This does not affect the output. The drawbacks 
in the RNN have been overcome by the LSTM, which 
is an effective method when compared to RNN. 

𝑦௧ ൌ 𝛾 ቀ𝐴௦. 𝑠ሺ𝑡 െ 1ሻ ൅ 𝐴௥𝑅௚ሺ𝑡ሻቁ                   ሺ12ሻ 

𝑖𝑝௧ ൌ 𝛾 ቀ𝐴௜௣௦ 𝑠ሺ𝑡 െ 1ሻ ൅ 𝐴௜௣௥𝑅௚ሺ𝑡ሻቁ            ሺ13ሻ 

𝑓𝑔௧ ൌ 𝛾 ቀ𝐴௙௚௦𝑠ሺ𝑡 െ 1ሻ ൅ 𝐴௙௚௥𝑅௚ሺ𝑡ሻቁ          ሺ14ሻ 

𝑜𝑝௧ ൌ 𝛾 ቀ𝐴௢௣௦𝑠ሺ𝑡 െ 1ሻ ൅ 𝐴௢௣௥𝑅௚ሺ𝑡ሻቁ          ሺ15ሻ 

𝑠ሺ𝑡ሻ ൌ 𝑓𝑔௧⨀𝑟ሺ𝑡 െ 1ሻ ൅ 𝑖𝑝௧⨀𝑦௧                    ሺ16ሻ 

𝑜𝑝ሺ𝑡ሻ ൌ 𝑠ሺ𝑡ሻ⨀𝑜𝑝ሺ𝑡ሻ                                        ሺ17ሻ 

In the above equation, “fg”, “ip”, and “op” denote 
the forget gate, input gate, and output gate, 
respectively. Parameter 𝛾 denotes the activation 
function, symbol ⨀ denotes the product of the gate 
value, and 𝑅 denotes the parameter of the matrices. 

3.5 Proposed LSTM-GWO 

The assessment system is crucial in the 
identification of MI characteristics, which has a 
serious influence on the computation final 
performance. A better direct way is to determine the 
constant with the highest MI of result variable Y and 
source variable using the following equation: 

𝑅 ൌ 𝐼ሺ𝑋௜;𝑌ሻ.                 (18) 

The penalized phrases in the MIFS [30] technique is 
predicated on a measure of significance that takes into 
account correlations and duplication between variables. The 
efficient algorithm is described below: 

𝑅 ൌ 𝐼ሺ𝑋௜;𝑌ሻ െ 𝛽෍  
௫ೞೞ

𝐼ሺ𝑋௜;𝑋௦ሻ                ሺ19ሻ 

Where S is the extracted features subset, Xs denotes the 
selected feature, and variable 𝑌 denotes the compensation 
for duplicated entries. 

 [30] presented the MIFS-U approach to lessen the reliance 
on parameters. The important components are expressed as 
follows: 

𝑅 ൌ 𝐼ሺ𝑋௜;𝑌ሻ െ 𝛽෍  
௫೙ೞ

𝑇ሺ𝜆௦,𝑌ሻ
𝐻ሺ𝑋௦ሻ

𝐼ሺ𝑋௜;𝑋௦ሻ              ሺ20ሻ 

𝑅 ൌ 𝐼ሺ𝑋௜;𝑌ሻ െ
1

|𝑆|
𝛽෍  
௫೘ೞ

𝐼ሺ𝑋௜;𝑋௦ሻ                        ሺ21ሻ 

𝑅 ൌ 𝐼ሺ𝑋௜;𝑌ሻ െ
1

|𝑆|
𝛽෍  
௫೘ೞ

𝑁𝐼ሺ𝑋௜;𝑋௦ሻ                   ሺ22ሻ 

𝑁𝐼ሺ𝑋௜;𝑋௦ሻ ൌ
𝐼ሺ𝑋௜;𝑋௦ሻ

minሼ𝐻ሺ𝑋௜ሻ,𝐻ሺ𝑋௦ሻሽ
                      ሺ23ሻ 
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The proposed methodology seeks to minimize redundant 
variables and enhance model accuracy by combining GWO 
and LSTM. Then, the Root Mean Square Error (RMSE) of 
the LSTM network is utilized as the assessment standard. 
The GWO-LSTM algorithm's operational principle is 
broken into two sections. Moreover, a model for prediction 
was developed using LSTM with GWO for variable 
selection in the procedure, and the LSTM NN is trained to 
find network hyper parameters and structure. The starting 
set of n variables is set to F, and the empty set is assigned 
to S. The modeling approach is GWO with the LSTM of 
RMSE. In this approach, the first variable is picked. Then, 
in each phase, the model parameters are identified until the 
simulation deteriorates or fulfils the stop requirement. 
Finally, the chosen subset is modeled and a value prediction 
is created. 

The pseudo code is presented as follows:  

Step 1 (Initialization): Using the training dataset, create a 
new upgraded Elman NN and determine the network's 
starting weight values. 

Step 2: Choose a dataset of input variables. 

  Step 2.1: Combine ISOMAP and LSTM to create a 
variable data preprocessing approach. 

  Step 2.2: Determine the estimate geographical separation 
for the prevailing parameter dataset to find the highest 
Eigen value of the grid and construct the Mercer kernel 
matrix using equation (8). 

  Step 2.3: Using the cost function, for control quasi 
cumulative distribution matrix and use algorithm to retrieve 
the kernel matrix using equation (10). 

  Step 2.4: Equation (11) is used to determine cost function 
based on Step 2.2 and Step 2.3. 

  Step 2.5: Solve the equation (12). 

  Step 2.6: Remove duplication of effort and distracting 
noises from the input categorical variables. 

Step 3: Apply equation (19) to the optimization and use 
equations (5) and (6) to obtain the additional features for 
equation (20). 

Step 4: Using equation (17), modify the weight values and 
create a new computational model for equation (18). 

4. Results and Discussion 

Data samples were obtained and categorized into two 
sections for enhanced LSTM ongoing coaching and 
feedback. 3000 operation datasets of secondary variables 
and related temperatures in the devolatilization claiming 
process were chosen for training, while 1500 processes 
datasets were used as the testing dataset. In addition to 

increasing forecasting accuracy, a data preprocessing 
strategy based on the integration of GWO and LSTM is 
employed to remove the background and inconsistent data 
from the training dataset. 

 
Figure 3: Cell concentration 

Figure 3 displays the SO2 concentration prediction curve 
generated by the GWO-LSTM method. Clearly, GWO-
LSTM can effectively follow the dynamic change of the 
attribute value, demonstrating the effectiveness of our 
technique. After repeated sessions in the same simulation 
testing process, all techniques in this study use a shared 
dataset with the same parameter optimization method. In 
almost the same engineering environment, several 
recognized concepts were emulated. The system for 
algorithm simulation was programmed using MATLAB 
2019. The following standards are used to record the 
theoretical values: 

(1) The set of possible analyzed parameters in the final 
procedure is referred to as overall size (MS)  

(2) Predictive Mean Squared Error (PMSE) is a metric that 
depicts the gap between the estimated and expected value. 
It is determined using the following equation: 

PMSE ൌ
1
𝑛௧
෍  

௡೟

௜ୀଵ

ቀ𝑦௜ െ 𝑦
^
௜ቁ
ଶ

             ሺ24ሻ 

where yi and yi^ are the actual and predicted values of the 
output variable, respectively. Parameter nt is the number of 
datasets in the testing samples. 

(3) The square of the collection correlation coefficients seen 
between actual worth and the forecast is known as the 
coefficient of determination (R2). 
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Figure 4: Real value versus Predicted values 

 

Figure 4 illustrates the real and predicted values of the 
target attribute using the GWO-LSTM model. The curves 
clearly show that our method can successfully track 
variations in butane concentration, significantly 
demonstrating its effectiveness. 

The gradient descent method is used to train the 
upgraded LSTM NN in the investigations with information 
extraction. The GWO and LSTM methods are used to 
choose the databases. Furthermore, the values are updated 
and determined using the Bayesian criterion to compare 
false detection curves [30]. The machine’s learning model 
is used to retrain the algorithm once the weight 
characteristics have been quite well. To achieve a good 
effectiveness, the training rate is adjusted according with 
loss's alteration.  

 

5. Conclusion 

The purpose of this research is to create and build soft 
sensors using artificial intelligence approaches. In this 
research, a unique soft sensor is created using a mix of a 
Long Short-Term Memory (LSTM) network and Grey Wolf 
Optimization (GWO). In the learning technique, LSTM was 
created to deal with linear models with substantial 
nonlinearity and unpredictability of manufacturing 
applications. To reduce the model's improper complication, 
GWO is employed as an input optimization strategy for 
LSTM. Originally, the newly created soft sensor combined 
LSTM's outstanding dynamic modeling with GWO's 
precise variable selection. The performance of the proposed 
approach is demonstrated using simulations on real-world 
datasets.  
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