
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

57

Manuscript received December 5, 2022
Manuscript revised December 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.12.7

Overview of the Sambodana Project: Development of Mobile
Communication Security System using Hardening Android

Cahyo Darujati1† and Moh Noor Al Azam2††,

University of Narotama, Indonesia; PT Panca Anugrah Integrasindo

Summary
The Sambodana project is a mobile communication security
system development project using Hardening Android. The initial
idea for this project is that information leakage occurs outside of a
communications application with end-to-end cryptographic
security. Android hardening prevents unwanted applications and
bloatware from being installed, such as unavailable Google Play
Store or install restrictions.
Keywords:
Hardening, Android, securing, Sambodana, Naro OS.

1. Introduction

The security of multimedia communications (both
voice and data) has become a national concern. One of the
government's efforts is to force various popular foreign
companies such as WhatsApp[1], Facebook[2],
Instagram[3], Twitter[4] and Tiktok[5] to open branches in
Indonesia and set up data centres in Indonesia. But one thing
that's been forgotten is that conversational evidence and
other data are becoming a new source for investigating more
information about our behaviour[6]. This has become an
important issue in modern times. Considering the existing
issues of national affairs and national strategic issues in the
field of defence and security, we believe that it is necessary
to develop mobile communication security using hardening
android[7] with name code Naro OS with logo in Figure 1.

Figure 1 Naro OS Logo

This activity creates a private and secure
communication system, as the developed system consists of
his two parts: software in the form of applications and
operating systems. This application is used to communicate
securely while using the Android hardened operating

system, as it uses encryption[8]. The system is expected to
be a solution for securing the communication needs of many
organizations, but especially partners. This system is the
answer to your defence and security needs. The innovation
by developing mobile communication security using the
hardening android is currently not protected by intellectual
property and is still closed. With reference to the
downstream system development model, we register
intellectual property, starting with trademark registration,
design, and patent[9].

The Sambodana project proposing from Narotama
University and PT Panca Anugrah Integrasindo (Panigra).
It's about forming a collaboration of both. We can support
your organizational and government needs. This
collaboration will address the needs of national defences
and security issues related to communications security and
enable enhanced application of open software development
methodologies among the public, especially academics,
consultants, practitioners, industry and government. The
purpose is that. It is also expected that this activity will
create a start-up specializing in communication security that
can compete globally in Indonesia.

Figure 2 Sambodana Project Logo

Matching Fund program from kedaireka[10] funding
this activity has been combined with hardening android and
communication application into a new start-up company
with Panigra as a partner. Panigra plans to create a
communication system by providing multiple information
technology devices including computers and gadgets, but
the developed communication system needs many
improvements such as chat application security and the
operating system used. These developments and
improvements have not yet been certified as intellectual
property rights but are in line with the downstream research
of the Narotama University team. This matching fund
activity facilitates collaboration between the applicant and

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

58

Panigra develops software development methodologies to
become globally competitive start-ups. Development
Stages shown in Figure 3.

Figure 3 Development Stages

2. Methodologies

One of the differences from typical multimedia
telecom companies is the enhanced Android operating
system[11] and telecom application integration. The
Sambodana solution business model offers the novelty of
being able to run multimedia communication services
securely and exclusively. Groups or organizations using the
Sambodana solution are treated exclusively with respect to
multimedia communications to ensure security.

2.1 Android Open Source

Using the list, a portion of manuscript, use the style
'itemize' specified from the style category dropdown menu.
One of the main features of Android is that it is open source.
The complete operating system source code, including
kernel, user interface, libraries, and major applications, is
freely available[12]. This means that anyone with the right
technical skills can build hardening android from source
and flash it onto a compatible device. This flexibility allows
different groups, some businessmen and some hobbyists to
develop different android distributions. These are often
called custom ROMs, but a more appropriate name is
custom firmware. You may be wondering how hard it is to
create your own custom ROM, a custom version of Android,
with all the basic components you need[13]. It is actually
possible. Before delving into the dark world of Android's
custom builds, we need to pause, keep our expectations in
check and appreciate the enormity of the task at hand. If you
have no programming experience, no Linux experience, or
do not know what a makefile is, this is not for you. Android
is a complete operating system. It is complex and contains
many different subsystems. Developing an operating
system as complex and useful as Android didn't happen
overnight. This means that if you do any customization, you
should start small. It takes hours of hard work and
dedication to create a radically different alternative Android
distribution. If you're comfortable writing code and know
how to use makefiles and compilers, building your own
custom Android ROM can be a rewarding experience.

2.2 AOSP System Requirements

In theory, it's possible to create custom Android
firmware for any computing device that can run the latest
operating system. However, to make your life easier, we'll
stick to building Android for Google's Pixel phones. To
build Android, you must have access to Linux and be
familiar with it. Since you will be using the terminal a lot,
you should be familiar with shell commands. You may be
able to use a Linux virtual machine, but we recommend
using a dedicated PC. Requires at least 400 GB of storage
and 16 GB of RAM or more, but 32 GB or 64 GB is
recommended. A modern multi-core 64-bit processor is
required. According to Google, building Android on a 6-
core computer with 64 GB of RAM takes about five times
as long as a 72-core computer with similar RAM. In my
tests, he foolishly tried to build a dual-core machine with a
10-year-old CPU. It took about 24 hours! Learn Patience
Android development is not fast. Synchronizing the source
repository may take several hours depending on the speed
of your internet connection. Moreover, a perfectly clean
assembly takes several hours. Even after small changes, you
may have to wait 10-20 minutes for the build to complete.
It all depends on your hardware. Don't expect a new version
of Android to be up and running anytime soon. The Android
Open Source Project (AOSP)[14] version does not include
Google services. So no Google Play, YouTube, Gmail,
Chrome, etc.

2.3 Start Creating Your Own Android ROM

The basic flow of custom ROM[15] creation is as
follows. Download and build Android from the AOSP.
Then modify the source code to get your custom version.
However, Google has excellent documentation on building
AOSP. Don't skip steps or read through snippets, here are
the general steps:
1. Set up your build environment, including installing the

appropriate development tools.
2. Get the source. This is done using the "repo" tool.
3. Get Proprietary Binaries - Some drivers are released in

binary form only. Select a destination using the
"Lunch" tool.

4. Start building with 'm'.
5. Build a bottle on your device using ADB and Fastboot.

Set up your build environment - The recommended
build OS is Ubuntu 22.10. You will need to install various
development related packages such as gcc, git and
python[16]. AOSP's Android master branch includes a pre-
built version of his OpenJDK, so no additional installation
is required. However, older versions of Android require a
separate JDK installation. You should use OpenJDK. To
write AOSP, you need to use Python3.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

59

Get your own binary - Binaries are provided as self-
extracting scripts. Unzip the archive and run the self-
extracting script at the root of the source tree. Binaries are
installed in the Vendor/ directory. Note that many Pixel
devices have two sets of his binaries from Google and
Qualcomm. you need both. Download the version of the
binaries that matches the AOSP version you are
building[14].

Pick a target - Browse through this list of Pixel[17] devices
and select the appropriate build name. For example, if you
have a Pixel 5, use the redefinition usability bug.

Start Build - M starts a build. The build system can run
multiple jobs simultaneously using the -JN argument. If you
don't use the yes argument, the build system automatically
chooses the optimal number of tasks for your system.

Flash the build to the device - Flashing the build to a
physical device requires Google's platform tools. You can
use Google's Android SDK platform tools or find adb and
fastboot in ./out/host/linux-x86/bin.

Flashing - After successfully flashing it to the device using
"fastboot flash all -w" you will see the vanilla version of his
AOSP. There are no Google services or Play Store, just a
few core apps. This is the basic structure of Android.
But congratulations. You have successfully built Android
from source code and flashed it to your device. it's nothing.

Customization Once - Android is up and running, you
can start customizing it and creating your own custom ROM.
This is where it gets really difficult. You're about to tinker
with the innards of the Android operating system, and the
problem is, Android is huge. My working directory contains
over 350 GB of data including source code, graphics,
compiled binaries and tools. It's a lot of things. Let's get
started. I will show you two simple tweaks to become an
Android firmware hacker.

Customize your Messages app - A fairly simple
customization is to modify one of the predefined apps. If
you're developing a full replacement Android distribution,
it's easy to modify or replace parts of your core app. In this
case we are only optimizing, but the principle is the same
for more complex changes and revisions. The main apps are
in the ./packages/apps/ directory and the messaging apps of
interest are in ./packages/apps/Messaging/. Look in
res/values/ and edit strings.xml. Edit with your favorite
graphics editor. If you want to use the command line, use vi
or nano. strings.xml contains all the English texts of the
application. If you use another language, you'll need to find
the corresponding XML files in the res/ directory. Find the
place in string.xml where conversation_list_empty_text is

defined. The hard part starts with "Once you start". Replace
with your own string.
Save the file and start another build with the m command.
Once the build is complete, flash it to your device and
reboot. Launch your messaging app and look for a new text.
Of course, this is a simple change, but you have the option
to change the default apps to your liking.

Customization Any self-respecting custom Android
distribution should contain information about the ROM
itself. To do this, you can change the system properties.
Locate the sysprop.mk file in the build/core/ directory. Edit
it and find the line that defines BUILD DESC. Save the file,
rebuild your device's firmware, and flash it again. After
rebooting, go to Settings then About Phone and scroll down.

3. Results

Official Android releases happen about once a year.
They are well supported by the Android ecosystem and used
by hundreds of millions of mobile his devices. So, you
might think there is little reason not to use the official
version of Android on your device. Why use a custom
mobile OS instead?

3.1 Adaptation means Optimization

Perhaps the most obvious reason to build a custom
mobile operating system is that it can be customized to your
organization's needs and priorities. However, what is often
overlooked is that customization is more than just tweaking
the appearance and behaviour of the operating system.
Customizations also provide opportunities to optimize
operating system performance, such as removing libraries
not needed for your use case. You can also customize the
OS to improve security by removing unnecessary
components (thus reducing the attack surface size) and
adding other OS hardening features that are not part of stock
Android. I can do it. In short, a custom operating system
allows you to create an operating system that outperforms
generic Android in terms of UI/UX, performance, and
security.

3.2 Deploy OS’s on Your Own Schedule

Relying on official Android releases increases pressure
to roll out operating system updates to devices based on
Android's own release schedule. Of course, there is no law
that requires you to update your operating system every
time Android releases a new version. However, if the
upgrade takes too long, you run the risk of compatibility
issues. So basically, you're committing to Android's own
schedule for operating system upgrades. However, starting
with Android 9, Google is cracking down on OS updates,
forcing consumer devices and MDMs to release updates

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

60

more frequently, and forcing them to update after 90 days.
Additionally, you may need to plan your application
deployments and upgrades to align with Android's official
release schedule. You probably don't want to publish a new
application on the same day as an Android update, as it
increases the risk of problems with the new, untested
operating system. With a custom operating system, you're
no longer tied to the official Android release schedule.
Update your operating system and applications on a
schedule that best suits your business.

3.3 Save Money

Considering Android is free, you might not think you
can save money with a custom mobile operating system. If
the official version of Android doesn't cost money, how can
you save money by creating your own custom version? It's
true that you may not save on direct OS development costs.
But in the long run, a custom operating system can save you
money by allowing you to create a deployment environment
that fits your needs. You can reduce the time and cost of
building and deploying applications by reducing the
complexity of your environment or by integrating
components into the operating system that would otherwise
have to be installed separately.

3.4 Platform Independent

Even if you base your custom operating system on
Android, you can avoid being locked into the standard
Android platform. If you have your own custom codebase,
you don't have to worry about how changes in Android itself
affect it. For example, let's say Android announces that an
upcoming official release will include a software library
that won't work on the specific hardware you need or is
incompatible with one of your apps. Or, even worse,
imagine the Android project changing its licensing policy in
questionable ways. Recently, when Elastic changed their
licensing policy, we learned that open source license
changes could turn the community upside down. If this
happens, you're still free to use your existing custom OS
code to do whatever you want. You don't have to worry
about other people's decisions eroding your ability to deploy
the mobile hardware and software your business needs.

3.5 Easier Monitoring and Management

Having full control over the operating system running
on your device makes it easier to monitor and manage.
Stock Android only allows you to collect monitoring data
and use Android-supported management frameworks.
Custom operating systems let you extend Android's native
management capabilities. You can include additional data
in your operating system's device profile to help identify
each device in your fleet and track its update history. You
can also install custom application deployment tools. This

is safer and easier than what Android or your device
provider offers by default.

Figure 4 Images ROMs List

3.6 Images for ROMs

In Figure 4, we can see the file naro-12.120221021-
EMPU-allioth.zip which shows that the build of Android
ROM version 12 has been successful. 3.7 Flashing Naro OS.
Now, we flashing device POCO F3 using boot-naro-11.1-
20221006-EMPU-allioth.img file. Power off the device and
boot it into bootloader mode. This step is very crucial,
power off device with hold Volume Down Button and
Power. Keep holding both buttons until appear the word
FASTBOOT on the screen, then release. Flash the image
file to device by typing “fastboot flash boot-naro-11.1-
20221006-EMPU-allioth.img”. After task complete, power
off and then power on again. If failed, connect the device to
PC via USB if it isn’t already. When device isn’t already in
fastboot mode, on PC, open a command promt (on
Windows) or terminal (on linux or macOS) window, and
type: “adb reboot bootloader”. Once the device is in
fastboot mode, verify your PC finds it by typing: “fastboot
devices”

Figure 5 Sambodana Project Splash on POCO F3

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

61

Figure 6 Samsung s6 detect bootloader is unlocked

Figure 7 Samsung s6 detect not running samsung's official software

3.7 Booting Naro OS

Appereances whenever first time boot for installation
from 2 types devices are different. In Figure 5, OPPO F3
have no problem to display Sambodana Project boot
Splash but Samsung Galaxy Tab S6 failed and display
messages in Figure 6 dan 7.

(a) Poco F3 (b) Samsung Galaxy S6

Figure 8 Naro OS powered by Hardening Android

3.8 First Installation Naro OS

In figure 8, Both devices very smooth to completed
the first Installation Naro OS . Step for the first installation
is (i) Language (Bahasa or English), (ii) Date and Time,
(iii) Select Wifi Network, (iv) SIM Card Missing
announce if detect no SIM Card, (v) Location Services
(allow or not), (vi) Update Naro OS Recovery if it
necessary, (vii) Naro OS Features, (viii) Protect Your
Tablet, (ix) Restore Apps and Data, (x) Finish.

 4. Conclusions

Naro OS is a mobile operating system based on
Android 12 using hardening techniques such as removing
pre-installed applications, Google Playstore. Added an
exclusive chat application with end-to-end encryption
techniques.

Next, we will build mobile device management and
installable catalog applications in private to serve private
organizations and private schools.

Acknowledgments

We would like appreciate to the Matching Fund
Program 2022 Batch 4 from Kedaireka, Directorate General
of Higher Education, Ministry of Education, Culture,
Research and Technology of the Republic of Indonesia for
this grant and also great collaboration with our industrial
partnership, PT Panca Anugrah Integrasindo.

References
[1] A. Kousar, S. Memon, and I. Ali Simming, “The

pragmatic analysis of í ½í±Œ, í ½í± , ✌ Emojis by
ESL learners in Verbal modalities: A case study of
Whatsapp chat,” IJCSNS International Journal of
Computer Science and Network Security, vol. 20,
no. 10, 2020, doi: 10.22937/IJCSNS.2020.20.10.25.

[2] D. Alghamdi, “On the Scale in the Kingdom of
Saudi Arabia: Facebook vs. Snapchat,” IJCSNS
International Journal of Computer Science and
Network Security, vol. 21, no. 12, 2021, doi:
10.22937/IJCSNS.2021.21.12.19.

[3] L. v. Casaló, C. Flavián, and S. Ibáñez-Sánchez,
“Influencers on Instagram: Antecedents and
consequences of opinion leadership,” J Bus Res, vol.
117, 2020, doi: 10.1016/j.jbusres.2018.07.005.

[4] M. Haffner, “Twitter,” in Geographies of the
Internet, 2020. doi: 10.4324/9780367817534-20.

[5] C. Montag, H. Yang, and J. D. Elhai, “On the
Psychology of TikTok Use: A First Glimpse From
Empirical Findings,” Frontiers in Public Health,
vol. 9. 2021. doi: 10.3389/fpubh.2021.641673.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

62

[6] W. Mazurczyk, L. Caviglione, and S. Wendzel,
“Recent Advancements in Digital Forensics, Part 2,”
IEEE Security and Privacy, vol. 17, no. 1. 2019. doi:
10.1109/MSEC.2019.2896857.

[7] L. A. Aljeraisy and A. Alsultan, “Android
Operating System: Security Features,
Vulnerabilities, and Protection Mechanisms,”
IJCSNS International Journal of Computer Science
and Network Security, vol. 22, no. 11, 2022, doi:
10.22937/IJCSNS.2022.22.11.53.

[8] N. K. Kamarudin, N. S. Bismi, N. H. Ahmad Zukri,
M. F. Mohd Fuzi, and R. Ramle, “Network Security
Performance Analysis of Mobile Voice Over Ip
Application (mVoIP): Kakao Talk, WhatsApp,
Telegram and Facebook Messenger,” Journal of
Computing Research and Innovation, vol. 5, no. 2,
2020, doi: 10.24191/jcrinn.v5i2.136.

[9] L. Laksminarti, “Kebijakan Pemerintah Dalam
Perlindungan Hak Kekayaan Intelektual (HAKI) Di
Indonesia,” Pencerah Publik, vol. 5, no. 2, 2018,
doi: 10.33084/pencerah.v5i2.1012.

[10] N. Rahmawati and A. Suzianti, “Development of
Customized Balanced Readiness Level Assessment
Prototype for Research Funding Instruments”.

[11] P. Gilski and J. Stefanski, “Android OS: A Review,”
TEM Journal, vol. 4, no. 1, 2015.

[12] Y. Aafer, X. Zhang, and W. Du, “Harvesting
inconsistent security configurations in custom
android ROMs via differential analysis,” in
Proceedings of the 25th USENIX Security
Symposium, 2016.

[13] M. Suleman, X. Zhong, and Y. Sun, “Empirical
Research and Auxiliary Tool for Custom Android

ROMs,” in Proceedings - 2020 International
Symposium on Computer Engineering and
Intelligent Communications, ISCEIC 2020, 2020.
doi: 10.1109/ISCEIC51027.2020.00011.

[14] S. S, “Developing Custom ROM based on Android
using AOSP,” Int J Res Appl Sci Eng Technol, vol.
8, no. 8, 2020, doi: 10.22214/ijraset.2020.30932.

[15] T. B. MohdAnis and S. Subramaniam, “Operating
System: The Power of Android,” International
Journal of Science and Research (IJSR), vol. 3, no.
11, 2014.

[16] D. Yugandhar and J.Kiran Kumar, “A Study on
Current Mobile Operating Systems,” Int J Sci Eng
Res, vol. 8, no. 5, 2017.

[17] W. Song et al., “Towards Transparent and Stealthy
Android OS Sandboxing via Customizable
Container-Based Virtualization,” in Proceedings of
the ACM Conference on Computer and
Communications Security, 2021. doi:
10.1145/3460120.3484544.

Cahyo Darujati received a doctor
in 2020 from Electrical Engineering
Department, Institut Teknologi
Sepuluh Nopember, Surabaya,
Indonesia. He is an Assistant
Professor Faculty of Computer
Science, Universitas Narotama,
Surabaya, Indonesia. His research
interest includes computer vision,

image processing, and security. He is IAENG member, leader
OWASP Surabaya Chapter and Cybersecurity Indonesia.

