
Two novel cache management mechanisms on CPU-GPU
heterogeneous processors

Huijing Yang* and Tingwen Yu
Beijing University of Technology, Beijing, China

{yangkx, ytw412}@emails.bjut.edu.cn

Abstract

Heterogeneous multicore processors that take full advantage of CPUs and GPUs within the same
chip raise an emerging challenge for sharing a series of on-chip resources, particularly Last-Level
Cache (LLC) resources. Since the GPU core has good parallelism and memory latency tolerance,
the majority of the LLC space is utilized by GPU applications. Under the current cache management
policies, the LLC sharing of CPU applications can be remarkably decreased due to the existence of
GPU workloads, thus seriously affecting the overall performance. To alleviate the unfair contention
within CPUs and GPUs for the cache capability, we propose two novel cache supervision mecha-
nisms: static cache partitioning scheme based on adaptive replacement policy (SARP) and dynamic
cache partitioning scheme based on GPU missing awareness (DGMA). SARP scheme first uses cache
partitioning to split the cache ways between CPUs and GPUs and then uses adaptive cache replace-
ment policy depending on the type of the requested message. DGMA scheme monitors GPU’s cache
performance metrics at run time and set appropriate threshold to dynamically change the cache ra-
tio of the mutual LLC between various kernels. Experimental results show that SARP mechanism
can further increase CPU performance, up to 32.6% and an average increase of 8.4%. And DGMA
scheme improves CPU performance under the premise of ensuring that GPU performance is not af-
fected, and achieves a maximum increase of 18.1% and an average increase of 7.7%.

Keywords: heterogeneous, multicore, CPU-GPU, cache partitioning

1 Introduction

With the continuous development of semiconductor industry technology, computer architecture is transi-
tioning from the multicore era into the heterogeneous era. For the heterogeneous multi-core system that
the CPU and GPU share the cache, the situation is different [7] , due to the GPU’s Single-Instruction
Multi-Data (SIMD) model, therefore the traditional LRU or FIFO algorithm cannot adapt to this special
storage mode, which will seriously downgrade the performance of the system[14].

Recently, a rich body of state-of-art work has been done on certain applications combining the CPU
and GPU[16]. For instance, as the CPU-GPU chip has seriously high energy consumption, e.g., the
GPU-accelerated DeepMind pioneering system, renowned for the first time of beating the champion Go
player, whose electricity bill is over 150 million each year[12]. Motivated by this, there are also some
work focusing on energy efficiency, i.e., dynamic voltage and frequency scaling (DVFS) and dynamic
resource sleep (DRS)[1]. Nevertheless, a large amount of GPU applications are memory-bounded and
the attributes that will influence their performance are more than processor frequency[9], but also GPU
memory management strategy. Moreover, a very material application, termed community detection,
which is used to search within the community structures such as social networks or graph data[17].

Research Briefs on Information & Communication Technology Evolution (ReBICTE), Vol. 7, Article No. 1 (June 15, 2021)
DOI:10.22667/ReBiCTE.2021.06.15.001

*Corresponding author

1



Two novel cache management mechanisms Yang and Yu

Since the huge quantity and complex inner-relationships of structural data, a certain level of paral-
lelism ought to be inevitably considered. However, it should be noted (for example, see [18], [5]) that
even well-formed parallelized managements reveal the potential problems and risks of significant low
speedups. The state-of-the-art cache replacement policies [8] applied Belady’s algorithm to the history
of memory accesses to help make better eviction or prefetch decisions. The above cache replacement al-
gorithms are not effective for CPU-GPU heterogeneous architectures, but little cache management work
has been done on CPU-GPU architectures[2],[13].

In our research, two novels shared LLC management policies for CPU-GPU heterogeneous system
are furnished, including static cache partitioning scheme based on adaptive replacement policy (SARP)
and dynamic cache partitioning scheme based on GPU missing awareness (DGMA). We evaluate the
experiment results of two proposed scheduling plans, which show that the devised methods achieve
higher system performance compared to the traditional LRU policy.

The rest of this paper is organized as follows. Section 2 briefly gives a systematic literature review.
Section 3 proposes SARP cache management scheme. Section 4 proposes DGMA cache management
scheme. Section 5 evaluates our approach based on experiment results. Section 6 concludes the paper.

2 Related Work

Due to the CPU and the GPU cores have completely different resource requirements [19], thread-level
parallel awareness of the cache management policy (TAP) [20] used core sampling and cache block life
cycle normalization to manage the shared cache for the CPU and GPU, the core sampling mechanism
employs a simple heuristic method to choose the appropriate replacement policy according to the cache
sensitivity of the GPU. The cache block lifecycle normalization technology detects the difference in
cache access rates, using this information to make the data access time of cache for CPU and GPU ap-
plications approximately equal. The author [10] utilized a and fined-grained cache replacement method
to deal with the CPU-GPU access behavior discrepancy among cache sets. Though it added additional
hardware cost for the LLC miss counter. The author [4] propose a utility- and fairness-aware cache
replacement policy in a SRAM- and STT-RAM-based hybrid LLC, which adjusts the priority and posi-
tion of GPU cache blocks dynamically based on core sampling and cache occupation monitoring. The
cache block lifecycle normalization technology detects the difference in cache access rates, using this
information to make the data access time of cache for CPU and GPU applications approximately equal.
The author [11] utilized a and fined-grained cache replacement method to deal with the CPU-GPU access
behavior discrepancy among cache sets. Though it added additional hardware cost for LLC miss counter.

3 SARP: static cache partitioning scheme based on an adaptive replace-
ment policy

In a heterogeneous environment, there is a certain degree of cache access differences between the CPU
and GPU about LLC resources, properly managing and distributing shared LLC resources is critical to
the performance of the whole system [6]. To avoid the excessive occupation of cache resources by the
GPU and reduce the negative impact of the GPU on the CPU, this chapter proposes a Static Caching
Partitioning Scheme Based on Adaptive Replacement Policy (SARP).

3.1 Cache Partitioning

To eliminate the unfair occupation of the shared LLC by the GPU, a cache partitioning mechanism is
adopted [3]. By modifying the address mapping algorithm, the CPU and GPU data blocks are mapped

2



Two novel cache management mechanisms Yang and Yu

into different cache spaces respectively, so that the CPU and GPU have their own specific cache space,
which avoids the mutual interference between the CPU and GPU.

3.2 SARP

The SARP mechanism in this chapter is a fusion of the cache partitioning mechanism and the adaptive
cache replacement policy. Based on cache partitioning, according to the type of cache requests, an
appropriate cache replacement policy is selected, so that the cache utilization of the CPU and GPU is
further improved [15].

For the exact ratio of the LLC between the CPU and GPU, we compare two different split ratios,1:1
and 1:3 to test the effect of various ratios on the performance. Besides, when the LLC cache is full
and data blocks need to be removed, we monitor the type of memory request. If it comes from the
CPU application, we employ the classic LRU replacement strategy. If the request belongs to the GPU
application, we use the improved tree-based pseudo-LRU replacement policy. So that the CPU and
GPU requests are being processed in their respective address spaces and use their characteristic-based
replacement algorithms.

4 DGMA: dynamic cache partition scheme based on GPU missing aware-
ness

The static partitioning scheme has certain limitations, the partition ratio is set in advance and it will not
be changed until the end. Therefore, the partitioning algorithm can be further optimized, and a dynamic
partitioning mechanism based on GPU missing awareness is proposed to perform dynamic partitioning.
So that CPU performance is increased as much as possible while ensuring that GPU performance is not
impacted, which optimizes the overall performance.

According to the state of the GPU application’s execution, DGMA dynamically monitors its per-
formance metrics and changes the ratio of LLC based on performance metrics for the CPU and GPU,
thereby maximizing the utilization efficiency of the shared LLC.

The workflow of DGMA can be divided into four steps. First, allocates an initial division ratio of L2
at the initial stage, and then performs statistical computations on the access information of the GPU at
intervals of certain clock cycles. The cache miss rate is calculated based on the total number of accesses
from the GPU and the number of missed memory accesses, and then the next division ratio is determined
according to the partition rule. The specific threshold allocation process is as follows:

The specific threshold allocation process is as follows:
a) In the initial state, the CPU and GPU occupy the equal size of the LLC space.
b) If Mi is less than the T hresholdlow, the division ratio of the shared LLC by the CPU and the GPU

is 1:7.
c) If the GPU’s Mi is calculated to be greater than or equal to the T hresholdlow and less than or equal

to the T hresholdhigh, the CPU and GPU use the intermediate state 1:3 division ratio for the shared LLC.
d) If the Mi is greater than or equal to the T hresholdhigh, it indicates that the missing rate of the GPU

application is large, GPU performance needs to be improved, and the cache partition ratio is restored to
the initial value of 1:1.

e) At the beginning of the next cycle interval, Mi of the GPU application is calculated according to
the GPU access information gathered during the current interval, the cache is allocated to CPU and GPU
applications according to the rule of cache partitioning.

Through the above algorithm, the partitioning algorithm is executed periodically. At the beginning
of the next cycle interval, according to the characteristics of the collected access requests, the best ratio

3



Two novel cache management mechanisms Yang and Yu

of the CPU and GPU for the LLC is established.

Figure 1: The flow of the execution of dynamic cache partitioning

5 Experiments and Evaluation

5.1 Simulator

We utilize the gem5-gpu to simulate heterogeneous multi-core architecture. This experiment set up two
CPU cores, four GPU cores, all the cores share an L2 cache for the experimental standard. We use SPEC
CPU2006 as the CPU workload. For GPU applications, Rodinia, Parboil, and NVidia CUDA SDK are
chosen.

The experiment uses the geometric mean (Eq.1) as the speedup of each application for the main
evaluation metric.

speedup = geomean(speedup(0...n−1)) (1)

4



Two novel cache management mechanisms Yang and Yu

IPC (Instruction per Clock) that is, the number of instructions executed per clock cycle, the calcula-
tion formula is shown in Eq.2.

IPC =
n−1

∑
i=0

Intructionsi/Cycles (2)

5.2 Evaluation

We review the benefit of SARP and DGMA of the shared LLC in a heterogeneous multicore processor.
We compare the performance among SARP 1:1, SARP 1:3, DGMA, and LRU. SARP 1:1 represents the
SARP algorithm where the CPU and GPU occupy an equal amount of LLC space. SARP 1:3 represents
the SARP algorithm where the ratio of the LLC space that the CPU and GPU occupy is 3:1. Fig.1 shows
the CPU speedup results compared to the LRU replacement policy on workloads.

Figure 2: Speedup over LRU of CPU

The experiment results show that the SAR 1 1 partition scheme improves CPU performance over
LRU by 3.4% on average, 21.5% on maximum. SARP 1 3 partition scheme improves CPU performance
by 8.36% on average, max for 32.6 %, and DGMA algorithm improves 7.68% on average, max for
18.1%. The GPU speedup results are shown in Fig. 2.

Figure 3: Speedup over LRU of GPU

As described above, DGMA aims to guarantee GPU performance. As we can see from the picture, for
the SARP 1 1 partition, GPU performance is decreased by 4.6% on average, for the SARP 1 3 partition,
GPU performance is reduced by 7.5% on average. But, GPU performance is lowered by only 0.1% when
using the DGMA algorithm.

The result of combining the speedup of the CPU and GPU for all workloads is shown in Fig. 3.
The figure shows that DGMA outperforms compared with the other two partition schemes, on aver-

age, the DGMA improves system performance by 5% over LRU, 11% on maximum.

5



Two novel cache management mechanisms Yang and Yu

Figure 4: Speedup over LRU of CPU

6 Conclusion and Future works

In this paper, we introduced two algorithms for determining the partitioning and replacement policies
of the last-level cache jointly used by CPU and GPU cores in a heterogeneous processor. The main
novelty of the SAPR algorithm is partitioning with adaptive replacement policy, partitioning can avoid
any interference with the performance of the application at runtime. DGMA dynamically monitors the
GPU’s miss rate during program execution and changes the space of LLC for the CPU and GPU based on
performance metrics, the empirical results show that DGMA outperforms SARP with the same system,
it can achieve better performance for both the CPU and GPU.

Funding

This research was funded by Beijing Natural Science Foundation, grant number 4192007 and the Na-
tional Natural Science Foundation of China (61202076).

Acknowledgments

This work is supported by Beijing Natural Science Foundation (4192007), and supported by the National
Natural Science Foundation of China (61202076), along with other government sponsors. The authors
would like to thank the reviewers for their efforts and for providing helpful suggestions that have led to
several important improvements in our work. We would also like to thank all teachers and students in
our laboratory for helpful discussions.

References
[1] N. Antoniadis and A. Sifaleras. A hybrid CPU-GPU parallelization scheme of variable neighborhood search

for inventory optimization problems. Electronic Notes in Discrete Mathematics, 58:47–54, 2017.
[2] O. S. Dong, G. B. Kim, J. M. Kim, and C. H. Kim. Cache reuse aware replacement policy for improving

gpu cache performance. In Proc. of the 2017 International Conference on IT Convergence and Security (IC-
ITCS’17), Seoul, South Korea, volume 450 of Lecture Notes in Electrical Engineering. Springer, Singapore,
September 2017.

[3] P. Faldu, J. Diamond, and B. Grot. Domain-specialized cache management for graph analytics. In Proc.
of the 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA’20), San
Diego, CA, USA, pages 234–248. IEEE, February 2020.

6



Two novel cache management mechanisms Yang and Yu

[4] L. Gao, R. Wang, Y. Xu, H. Yang, Z. Luan, D. Qian, H. Zhang, and J. Cai. SRAM- and stt-ram-based hy-
brid, shared last-level cache for on-chip CPU-GPU heterogeneous architectures. Journal of Supercomputing,
74(7):3388–3414, 2018.

[5] V. Garcia, J. Gómez-Luna, T. Grass, A. Rico, E. Ayguadé, and A. J. Peña. Evaluating the effect of last-level
cache sharing on integrated GPU-CPU systems with heterogeneous applications. In Proc. of the 2016 IEEE
International Symposium on Workload Characterization (IISWC’16), Providence, RI, USA, pages 168–177.
IEEE, September 2016.

[6] M. Gowanlock and B. Karsin. A hybrid CPU/GPU approach for optimizing sorting throughput. Parallel
Computing, 85:45–55, 2019.

[7] M. Hofmann, R. Kiesel, D. Leichsenring, and G. Rünger. A hybrid CPU/GPU implementation of computa-
tionally intensive particle simulations using opencl. In Proc. of the 17th International Symposium on Parallel
and Distributed Computing (ISPDC’18), Geneva, Switzerland, pages 9–16. IEEE, June 2018.

[8] A. Holey, V. Mekkat, P. C. Yew, and A. Zhai. Performance-energy considerations for shared cache man-
agement in a heterogeneous multicore processor. ACM Transactions on Architecture & Code Optimization,
12(1):1–29, 2015.

[9] A. Jain and C. Lin. Back to the future: Leveraging belady’s algorithm for improved cache replacement. In
Proc. of the 43rd ACM/IEEE Annual International Symposium on Computer Architecture (ISCA’16), Seoul,
South Korea, pages 78–89. IEEE, June 2016.

[10] Z. Li, L. Ju, H. Dai, X. Li, M. Zhao, and Z. Jia. Set variation-aware shared LLC management for CPU-GPU
heterogeneous architecture. In J. Madsen and A. K. Coskun, editors, Proc. of the 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE’18), Dresden, Germany, pages 79–84. IEEE, March 2018.

[11] J. Ma, L. Yu, T. Chen, and M. Wu. Analyzing memory access on cpu-gpgpu shared llc architecture. In Proc.
of the 14th International Symposium on Parallel and Distributed Computing (ISPDC’15), Limassol, Cyprus,
June-July 2015.

[12] X. Mei and X. Chu. Dissecting GPU memory hierarchy through microbenchmarking. IEEE Transactions on
Parallel and Distributed Systems, 28(1):72–86, 2017.

[13] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood. gem5-gpu: A heterogeneous CPU-GPU
simulator. IEEE Computer Architecture Letters, 14(1):34–36, 2015.

[14] S. Qiao, N. Han, Y. Gao, R. Li, J. Huang, J. Guo, L. A. Gutierrez, and X. Wu. A fast parallel community
discovery model on complex networks through approximate optimization. IEEE Transactions on Knowledge
and Data Engineering, 30(9):1638–1651, 2018.

[15] Z. Shi, X. Huang, A. Jain, and C. Lin. Applying deep learning to the cache replacement problem. In Proc.
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’19), Columbus, OH,
USA, October 12-16, 2019, pages 413–425. ACM, October 2019.

[16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lilli-
crap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

[17] S. Souravlas, A. Sifaleras, and S. Katsavounis. Hybrid CPU-GPU community detection in weighted net-
works. IEEE Access, 8:57527–57551, 2020.

[18] E. Teran, Z. Wang, and D. A. Jiménez. Perceptron learning for reuse prediction. In Proc. of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’16), Taipei, Taiwan, pages 2:1–2:12.
IEEE, October 2016.

[19] Q. Wang and X. Chu. GPGPU performance estimation with core and memory frequency scaling. In Proc. of
the 24th IEEE International Conference on Parallel and Distributed Systems (ICPADS’18), Singapore, pages
417–424. IEEE, December 2018.

[20] L. Xiao, S. Wang, and G. Mei. Efficient parallel algorithm for detecting influential nodes in large biological
networks on the graphics processing unit. Future Generation Computer Systems, 106:1–13, 2020.

——————————————————————————

7



Two novel cache management mechanisms Yang and Yu

Author Biography

Huijing Yang received the B.S. degree from Zhoukou Normal University, Zhoukou,
China in 2018. And she is currently a Ph.D. student at Beijing University of Technol-
ogy, Beijing, China. She is a student member of CCF. Her main research direction is
computer architecture.

Tingwen Yu received a bachelor’s degree from Beijing University of Technology
in 2018 and is currently a graduate student at Beijing University of Technology.
She is a student member of CCF and her main research field is computer architec-
ture.

8


	Introduction
	Related Work
	SARP: static cache partitioning scheme based on an adaptive replacement policy
	Cache Partitioning
	SARP

	DGMA: dynamic cache partition scheme based on GPU missing awareness
	Experiments and Evaluation
	Simulator
	Evaluation

	Conclusion and Future works

