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Abstract

Nowadays, the Internet of Things (IoT) networks are increasingly used in many areas. At the same
time, the approach connected with the implementation of the network security monitoring system is
of particular relevance for the protection of IoT networks from threats. Due to the peculiarities for
construction and operation of IoT networks, the use of traditional protection systems for IoT is diffi-
cult or impossible. One of such features is the need to analyze very large amounts of data in real time
and with minimal computational cost. Given the limited computing capabilities of IoT networks, we
propose the architecture of a big data distributed parallel processing system based on Hadoop and
Spark software platforms. The issues related to the implementation of this system and its main com-
ponents are also considered. The results of an experimental evaluation of the system performance
are discussed. They confirm the conclusion about its high efficiency. A comparative evaluation of
the implemented systems on Hadoop and Spark platforms is conducted.

Keywords: complex event processing, Hadoop, Spark, security monitoring.

1 Introduction

The IoT networks allow one to integrate various computer devices through different types of commu-
nications into a single information infrastructure. The types of communications include the Internet,
mobile networks, local networks and others. The computer devices that are combined with the IoT in-
clude central computers, user devices with embedded controllers, sensors of environmental information
and others. These factors are the reasons why IoT networks are now finding increasing dissemination in
many areas (healthcare, transport systems, smart houses, robotics, etc.). At the same time, IoT networks
have features that distinguish them from traditional computer networks. Such features are a very large
number of data sources, a very large input stream of heterogeneous data, limited computing and energy
resources of IoT network nodes. Because of these features, the security problem of IoT networks is
rather actual.

Vulnerabilities of network nodes, variety and complexity of cyber attacks and gravity of their con-
sequences [2, 3] highlight the importance for efficient methods and means of information security, but
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traditional methods and means of information security are not effective enough in IoT networks. This is
due to the low computing power of IoT network resources and the large number of different types of used
communication networks. For these reasons, a new approach is of particular relevance for the security of
IoT networks. This approach is associated with the creation and application of security information and
event management (SIEM) systems [4, 5, 6]. SIEM systems monitor network security. The monitoring
consists of collecting data about security events from remote devices, information sensors and network
elements and their preliminary processing. However, a large number of data sources types that are used
for network security monitoring and high intensity of event streams lead to the need of developing new
solutions for processing of Big Data. One such solution is the approaches proposed in this paper to
develop a system for parallel processing of security data intended for implementation in IoT networks.

The developed parallel data processing system has the following features determining the theoretical
and practical significance of the paper. First, due to the use of Complex Event Processing (CEP) tech-
nology, the system implements basic real-time pre-processing functions, which are data normalization,
data filtering, data aggregation and data correlation. Secondly, the results of preliminary processing are
provided by visual representation (visualization). For this purpose, not only standard, but also specially
designed visualization models are used. Thirdly, the system operates under the conditions of inherent
computational limitations of the IoT network elements. In this case, the basis for building a parallel se-
curity data processing system is the Hadoop open source software environment. As it is known, Hadoop
is currently the most widespread and rather flexible platform, allowing to create parallel processing sys-
tems [7, 8, 9]. In addition, a Spark distributed data processing environment was used. This allowed us to
compare the efficiency of the Hadoop and Spark platforms to develop a system for parallel processing.
Thus, the main goal of the work is to develop and study architectural and system solutions aimed at
creating a parallel processing system for IoT network monitoring, as well as comparing the performance
of Hadoop and Spark parallel processing platforms to be used to build this system.

2 Related work

Questions related to the usage of CEP technology and Hadoop platform for parallel processing of data
have recently been the focus of research in the Big Data field. Let us consider the most characteristic
works in which CEP technology is implemented based on Hadoop.

A system for analyzing big data in medical information infrastructures is discussed in [10]. This
system is based on Hadoop, implemented in Java, belongs to open source software under the auspices
of Apache and uses a relatively simple software model. The architecture of this system includes an
Event Adapter, a CEP Analysis Engine, and a Report & Event Generator. The system is aimed at sharing
medical institutions with ERP systems. The analysis engine contains an Event Collector, a Data Analyzer
and a Storage Server. Unfortunately, the authors of this paper do not give the results of an experimental
evaluation of the system under consideration.

In [11], a system based on Hadoop compatible software and the Java platform is considered. This
system consists of user interaction, data analysis, and data storage components. Interaction between
components is performed using queries. Control is carried out by Java Servlet controllers. However, this
system is oriented to process data only in web applications. This limitation and the lack of experimental
evaluation results do not allow us to assert that this can be used to monitor the IoT network security.

CEP system for processing big datasets when controlling the movement of urban passenger vehicles
is considered in [12]. The proposed system combines two technologies: CEP and Distributed Stream
Processing Systems (DSPSs) [13]. CEP technology is supported by the Esper system. DSPS is realized
by the Storm system. The Hadoop system is an integrator that combines these two technologies. In
addition, Hadoop provides a historical data analysis. Experimental evaluation of this system showed its
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high scalability. However, in our opinion, the application of this system to handle large volume of IoT
network monitoring data is difficult. This is due to the large requirements of this system for computing
resources.

A system that integrates CEP technology and Data Mining methods is discussed in [14]. As the scope
of this system, the ”smart city” scenario is considered. ”Smart City” is a variation of the IoT network.
For this reason, this work is of undoubted interest, since it is an example of the CEP application in IoT
networks. The system contains the module for data integration and preprocessing, in which data mining
is performed. However, in our opinion, data mining on large volumes requires significant computational
costs. Therefore, this system in IoT networks has limited application.

Interesting are some known works in which issues of improving the CEP technology are investigated.
In [15], a CEP system is presented, in which a High-Level Event Query Language (SQL) is implemented.
For this language, query optimization algorithms have been developed. The optimization criterion is the
minimum CPU time. In [16] the language for typical queries in the CEP environment is presented. It
allows one to process complex queries more quickly. However, the widespread use of these systems to
monitor IoT networks is difficult due to the need for additional software tools that support these query
languages.

Systems for web data processing using CEP technology are offered in [17, 18]. In [17], web data
is preliminarily translated into lightweight structure events. [18] considers the system that allows one
to describe and monitor complex events in near real time. However, in spite of the fact that both pro-
posed approaches are feasible, the issues of preliminary processing of events on the basis of parallel
computations were not considered in these works.

CEP system, designed to collect and preprocess data with RFID, is considered in [19]. In this system,
the results of event stream processing are stored in the MySql database. This system is an example of
the CEP technology implementation in the IoT network. However, it can not be successfully used for
security monitoring of IoT networks, since the issues of big data parallel processing are not considered.

In [20, 21], a well-scaled CEP system for analyzing data streams is considered. The system performs
a centralized load parallelization by splitting queries into sub-queries and assigning computing clusters
to sub-queries. The authors investigated various strategies for cluster assignment. At the same time, the
results are oriented to a cluster computing infrastructure with a very large number of nodes. The focus
on cluster infrastructure prevents to the use of this system in IoT networks.

[22] suggests an approach that supports the accuracy of parallel execution of data streams through the
implementation of active rule support by CEP mechanism. This approach is called Active CEP. Active
rules allow maintaining the integrity of CEP transactions. However, it hard to implement this approach
for parallel processing of events in IoT networks due to computational cost constraints.

In [23] it is proposed to use genetic algorithms for load balancing. The system takes into account
different characteristics of IoT communication channels (throughput, input load, etc.). However, genetic
algorithms cannot be considered as a big data processing method, providing near real-time scale.

Summarizing the analysis of parallel processing systems and CEP applications for IoT, the following
conclusions can be drawn. First, network security monitoring is a relatively new and under-researched
area for big data parallel processing systems. Secondly, there are certain works devoted to the imple-
mentation of CEP in networks like IoT. However, the issues of big data parallel processing in IoT are
considered insufficiently. Finally, there are CEP systems intended for parallel processing of big data.
However, these systems cannot be implemented in IoT because IoT has hard limitations on the band-
width of communication channels and the performance of computing nodes.
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3 System architecture

Let us consider the architecture of the suggested big data processing system for IoT network security
monitoring and the features of its components.

Sources of security events are end-user devices (”things”) and network infrastructure elements (routers,
anti-virus tools, operating systems, DBMS, firewall etc.). These events are fixed in the relevant security
logs.

Sources generate large data streams. These streams can be referred to the category of Big Data. As
a result, the proposed system is a competitor for traditional network security systems in cases where the
latter systems are not able to handle big data streams in IoT networks in a timely manner.

The architecture of the system includes five functional components shown in Fig. 1.

Figure 1: System architecture

These components are:

• data collection;

• data storage;

• data aggregation;

• data normalization and analysis;

• data visualization.

In Fig. 1, arrows show the main directions of data streams. All components are based on the means
of implementing Hadoop / Spark parallel streaming computing, installed on the virtualization platform.
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This approach allows us to achieve the necessary scalability of the system, as well as its high flexibility.
As a result, the system can be configured for any IoT network configuration.

The input of the data collection component receives streams of large security events. The data col-
lection component organizes distributed data reception and its storage in the data storage component. In
addition, the data collection component contains a test data stream generator. It is used to evaluate the
effectiveness of the system.

The collected data is recorded in the Hadoop Distributed File System (HDFS). HDFS is the basis
of the data storage component. It is formed by means of Hadoop / Spark. HDFS is an alternative and
more efficient way of storing data for IoT network security monitoring than traditional SQL database
management system [24].

After security events are recorded, they are packaged into data streams with a specific data scheme.
The simplest (minimal) version of the data schema, shown in Fig. 1, contains the following fields:

• “IP src” – source IP address;

• “port src” – source port;

• “IP dst” – destination IP address;

• “port dst” – destination port.

This stream is passed to the data aggregation component which processes the stream using Hadoop /
Spark tools by the streaming CEP technology functionality. The data aggregation component calculates
extremums (minimum and maximum) and central tendency measures (average values, modes, quantiles
etc.) using security events records.

As an example, Fig. 2 shows a CEP operators chain intended to detect the port scan security events.
We will discuss it in detail in Section 5. The chain consists of CEP operators Map, ReduceByKey,
and Filter. The Map operator divides the stream into substreams for their parallel execution. The Re-
duceByKey operator integrates independent substreams by key and performs function over values of the
integrated substreams. The Filter operator performs the selection of records in the stream using the given
rules.

Figure 2: CEP operators chain

The output results of the data aggregation component are recorded in HDFS and transferred to the
input of the data normalization and analysis component. Data normalization consists of bringing all input
data to a single internal format. The CSV (Comma-Separated Values) format was proposed as such one.
Data analysis consists of identifying security incidents based on predefined rules for correlating events
in the input data stream. Therefore, in this component, more complex data processing tasks are solved.
As an example, Fig. 1 shows the detection of cases when the number of packets per a port exceeds
the specified value. This can serve as a precondition for developing warning messages and initiating a
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procedure for developing countermeasures. The results of the normalization and data analysis component
operation are recorded in HDFS.

The data visualization component receives the resulting data from the data storage component that
was generated by the data normalization and analysis component. This component provides a graphi-
cal (visual) representation of security events in accordance with the selected visualization model. The
original data for visualization is placed in the database of the visualization component. The choice of
a specific visualization model is made by the security administrator. The output data representation
about security events and incidents is used by the administrator to make decisions about the IoT network
security. For example, Fig. 3 shows the “Matrix” visualization model.

Figure 3: “Matrix” visualization model

The “Matrix” model is a non-standard model. It was specially developed for the distributed process-
ing system. The matrix displays the security level of communications connecting the elements of the
IoT network. The columns and rows of the matrix correspond to the nodes of the network. The cells
correspond to the communication lines connecting these nodes. Using the color and brightness of the
matrix cells, we can encode any two characteristics. In Fig. 3 we encoded “degree of danger” with color
and “importance” with brightness.

4 Implementation

Two versions of the system architecture were developed. In the first variant, it was created on the basis of
Hadoop 2.6.4. The second version used Spark 1.6.1. To build the hardware platform of the computational
cluster in both variants, the Supermicro X9DRL-3F motherboard with two Intel Xeon processors E5-
2620 v2 @ 2.1 GHz on board was used.

In the first version, based on the ESXi 6.0 hypervisor, seven virtual machines were created with
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the operating system Ubuntu Server 14.04. Among them, there were six workers and one main virtual
machine. Each machine has two threads allocated and 2 GHz processor reserved. In addition, 4 GB
RAM was reserved for each virtual machine.

In the second variant, the studies were performed on a set of 1.5 GB on one node with different char-
acteristics of the machine. The task was run on the different number of threads with different machine
configurations.

The source code for Hadoop was compiled on a single virtual machine and copied to the other
machine. The management of the computing cluster resources was carried out using the YARN (Yet
Another Resource Negotiator) software. This component is part of the standard Hadoop configuration.
YARN performs the task scheduler function, since it allocates Hadoop resources for the needs of the
tasks being run.

The YARN tool consists of a Resource Manager (RM) module and a Node Manager (NM) module.
The RM module runs on the main node. The NM module operates on the work node. When a request
for a task to the RM module is received, it allocates resources (creates a container) to one of the NM
modules and starts the Application Master (AM) process on them.

The AM process determines what resources are required for the task to be executed. It sends a request
to the RM module to allocate containers on the NM modules. Next, the AM process receives information
about NM modules with allocated containers for the task. The task runs on these modules. In addition,
the AM process controls the routine execution of the task. If the processes are terminated prematurely,
they are restarted.

The NM module monitors the status of specific work nodes. It sends the information about available
computing resources to the RM module. In addition, it creates and removes containers at the request
of the RM module, terminates processes that go beyond the resources of the container, and periodically
sends the heartbeat signals to the RM.

YARN, MapReduce and Spark settings established for the experiments are given in Table 1.

Table 1: Experimental settings
Components Parameter Value

6*YARN yarn.nodemanager.resource.memory-mb 8096
yarn.scheduler.minimum-allocation-mb 1024
yarn.scheduler.maximum-allocation-mb 8096
yarn.scheduler.minimum-allocation-vcores 1
yarn.scheduler.maximum-allocation-vcores 32
yarn.nodemanager.vmem-pmem-ratio 2.1

4*MapReduce mapreduce.map.memory.mb 1024
mapreduce.reduce.memory.mb 1024
mapreduce.map.cpu.vcores 1
mapreduce.reduce.cpu.vcores 1

4*Spark mapreduce.map.memory.mb 1..8
mapreduce.reduce.memory.mb -Xmx2g
mapreduce.map.cpu.vcores 0.35
mapreduce.reduce.cpu.vcores true

An important task for preparing and conducting the experimental evaluation of the developed system
was the preparation of input data streams. The following requirements were imposed on the content of
the input data streams. They had to contain information of two types:

• about events describing network traffic and reflecting legitimate and malicious activity;
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• about events describing changes in software and hardware configurations of personal computers,
network equipment and consumer devices.

As a result, the input data streams were formed in two ways: using the test data generator and using the
external database.

The test data generator included hardware and software. The hardware comprised workstations,
ASUS RT-N16 routers, Arduino Yun microprocessors and a firewall. The software included Nessus
Home security scanner, Wireshark 1.12.2 traffic analysis system, NMap 6.47 network scanner, MetaS-
ploit Framework 4.0 system and Snort 2.9.7.0 intrusion detection system.

The MAVILab database was used as the external database of experimental network traffic data
(http://www.fukuda-lab.org/mawilab/index.html). This database consists of network packets
in various formats (tcp, http, ftp, etc.). It describes the real network traffic that circulates between Japan
and the United States. Packages contain information about various security events, including events re-
lated to computer attacks. The most common attacks that occur in this database are DoS attacks, port
scanning, TCP network scanning, UDP scan of the network, ICMP network scanning, and others. Each
file included in the external database has the *.pcap format and corresponds to network traffic of 15 min-
utes. The use of an external database enabled the inclusion of events describing real network traffic and
reflecting legitimate and malicious activity in the input data streams. This made it possible to check the
developed system under conditions that are as close as possible to the real operating conditions of the
system.

5 Experimental results

The experimental evaluation of the developed system was carried out to determine the processing speed,
depending on the volumes of the input data streams and other characteristics of the system. The analysis
of the input data streams was carried out on the basis of given rules. In particular, the following statement
was used as one of these model rules: “the security event about port scanning is registered only if packets
have been sent to more than 10 ports from the same IP address to another IP address, and each port had
received less than 5 packets”.

This rule can be specified as follows:

Es = {e ∈ E | (portse > 10)∧ (packetse < 5)},

where e – an event from the set of events E, portse – the number of ports scanned on the destination IP,
packetse – the number of packets sent to the corresponding port, Es – a set of scan events found.

In this case, an aggregation was performed over the src ip field of the TCP packet header, which
determines the IP address of the source.

On Hadoop the developed test program for data analysis contained four MapReduce tasks (Fig. 4).
Two tasks fulfilled the rules. Two tasks performed the aggregation function.

The solution of the problem of analysis according to the rule was carried out in two stages. At the
first stage, the triplet (src ip, dst ip, dst port) was selected from the entire tcp-header in the Map phase.
It was used as a key. The value was “1” in this case. As a result, the number of packets that came to
the selected port of the recipient’s IP address from the source’s IP address was calculated in the Reduce
phase, when adding values. In this case, according to the condition of the task, only those key-value pairs
were included in the output file, where the sum of packets arriving at the port was less than five.

In the second phase of the analysis, the (src ip, dst ip) pair was selected as the key in the Map phase.
The value of count(), which determines the number of packets received on the port, was sent as a value.
The Reduce phase calculates the number of values for each key. It turned out to be equal to the number
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of ports to which packets were sent from the outgoing IP address to the IP address of the recipient.
According to the condition of the task, if the number of ports is more than 10, then the key and the
number of ports were written to the output file.

Figure 4: MapReduce tasks for Hadoop data analysis

Aggregation was also carried out in two stages along one of the tcp-header fields (Fig. 5). For
example, for the src ip field in the first step in the Map phase, the key was the src ip field. The value was
“1”. In the Reduce phase, by adding the key values, it was calculated how many occurrences the certain
src ip field had in the source logs. At the second stage in the Map phase, the key-value pair was used as
a value, and the key itself was left blank. In the Reduce phase, we searched for the maximum, minimum,
and average value of src ip occurrences.

Figure 5: MapReduce tasks for Hadoop data aggregation

For Spark, we used the filtering function for a similar set of rules, performing the same task as in the
case of Hadoop (Fig. 6).

The task was run on a different number of threads with the following virtual machine configurations.
The machine had a memory of 80 GB HDD and 16 GB RAM. The test set had a capacity of 1.5 GB (3
files of 512 MB or 48 blocks of 32 MB). The speed of reading from the disk was 20-150 MB/s (avg. 110
MB/s). The processing speed of the block varied from 1500 to 3200 ms.

During experimental studies, the processing times of the input data streams were repeatedly mea-
sured. This time depended on the amount of input files and the number of working machines included in
the computing cluster. The volume of input files changed in the range from 0.5 to 3 GB. The number of
machines in the cluster was 3, 5, or 7 units.

The results of the experimental evaluation of the processing time of the input data streams, depended
on the load volume and the number of nodes in the computational cluster, are presented in Table 2 (for
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Figure 6: CEP operator chain for Spark data analysis

Hadoop) and Table 3 (for Spark). The “clean” load processing time was taken into account without
considering the setting. The experimental estimates were calculated as the average values obtained for
50 runs.

Table 2: Experimental results on the Hadoop
Input load Processing time, sec Performance, 103 events/sec

Volume, GB Events, 106 3 nodes 5 nodes 7 nodes 3 nodes 5 nodes 7 nodes
0.5 0.9 76.41 61.85 51.65 11.48 14.18 16.98
1.0 1.8 135.98 106.38 102.00 12.90 16.49 17.20
1.5 2.6 208.18 161.35 158.93 12.64 16.31 16.56
2.0 3.5 322.28 202.32 179.05 10.89 17.34 19.60
2.5 4.4 409.81 259.08 210.91 10.70 16.93 20.80
3.0 5.3 522.3 357.98 245.12 10.08 14.70 21.47

Table 3: Experimental results on the Spark
The 4core (2x2) 6core (2x3) 8core (2x4) 6core (2x3) 8core (1x8) 8core (1x8)

number of 6144 GHz 9216 GHz 12288 GHz 12288 GHz 12288 GHz 8192 GHz
threads (1.5 GHz x 4) (1.5 GHz x 6) (1.5 GHz x 8) (2.0 GHz x 6) (1.5 GHz x 8) (1.0 GHz x 8)
1 thread 92.55 sec 91.77 sec 89.23 sec 91.92 sec 85.88 sec 86.14 sec
2 thread 41.93 sec 47.11 sec 44.03 sec 42.62 sec 42.58 sec 43.71 sec
3 thread 38.22 sec 28.28 sec 29.14 sec 27.95 sec 29.21 sec 29.87 sec
4 thread 38.15 sec 24.42 sec 21.72 sec 21.64 sec 22.5 sec 27.73 sec
5 thread - 23.62 sec 18.44 sec 19.35 sec 17.76 sec 26.84 sec
6 thread - 23.77 sec 16.68 sec 18.01 sec 17.26 sec 25.3 sec
7 thread - - 16.52 sec - 16.23 sec 25.14 sec
8 thread - - 16.58 sec - 16.58 sec 24.41 sec
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Fig. 7 shows the dependencies of the processing time of input data on the number of virtual machines
in a computational cluster for the case of using Spark. From analysis of these results, it should be noted
that they completely correspond and even exceed the results obtained in other known works. In particular,
experimental estimates for the Hadoop system were also obtained in [12], in which the number of nodes
in the cluster was 3, 5, or 7. In this system, the data processing rate ranged from 103 to 104 events per
sec. In our system, the integrated performance was in the range from 104 to 2.1 * 104 events per sec.
This allows us to say that the performance of the developed system is not worse, but even better than for
known systems, despite the presence of computational limitations inherent in IoT networks.

Let us compare the performance of Hadoop and Spark according to the results of tests on a data set
equal to 1.5 GB. Hadoop shows the time 258...328 sec in different configurations. For this task, Spark
showed a time of 16. . . 93 sec. It should be noted that to create seven virtual machines in the cluster for
Hadoop it was allocated 14 GHz. When testing using Spark, a maximum of 12.3 GHz was used.

Figure 7: Experimental results on the Spark

Considering the results of tests, we can say that utilization of last two threads of the virtual machine
does not give a significant increase in performance for Spark. This is because the operating system
itself uses 1.5. . . 2 threads for its own needs. In addition, it should be noted that the number of virtual
sockets does not affect the performance of the system. It can be seen from columns 3 and 5 of Table
3. The configurations in these columns are, in first case, two virtual sockets for 4 threads (2x4) and,
in the second case, there was one socket with 8 threads (1x8). The processing times in both cases are
practically the same.

Reducing the power of one stream from 1.5 GHz to 1.0 GHz (columns 5 and 6) gives a logical
reduction in performance by 33% only if more than half of all threads are used. The same picture is
observed in case of increasing the power of the thread from 1.5 GHz to 2.0 GHz (columns 2 and 4).
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An increase in performance by 33% occurs only when more than half of the threads are running. Such
strange behavior on a low threads number is due to the peculiarity of the hypervisor’s work, which
redistributes the resources given out to the machine to the loaded threads.

Comparative assessment of the characteristics of the system developed with the ones of the systems
closest by the solvable tasks is provided in Table 4.

Table 4: Comparative assessment of results
2*Considered systems Configuration of the Throughput of big data 2*Solved tasks

computing platform processing
Vehicles Traffic Management Hadoop, Storm, and Esper; From 7∗104 to 9∗104 Controlling the movement of

System [12] 3, 5 or 7 VMs in the virtual cluster tuples per second urban passenger vehicles
Experimental system SASE++ [16] Hadoop, optimizer From 30∗104 to 700∗104 Sequencing lists

events per second
Medical information analysis Hadoop Up to 12K events per second Medical data analysis

System [10]
Our system Hadoop, Spark; Hadoop: from 1.1∗104 to Security monitoring

3, 5 or 7 VMs in the virtual 2.1∗104 events per second; in the Internet of Things
cluster Spark: from 27∗104 to networks

150∗104 events per second

The characteristics presented in Table 4 show that the experimental results are in full agreement with
the results of other systems. At the same time, it can be seen that Spark demonstrates much higher
performance than Hadoop on similar tasks. This is because Spark uses memory more efficiently and
stores intermediate data in RAM. In turn, Hadoop writes the resulting data to the hard disk after each
Map and Reduce operations. Continuous interaction with the hard drive creates significant time delays
for Hadoop. However, the advantage of Spark quickly disappears under decreasing the amount of RAM
allocated.

6 Conclusion

In this paper, we proposed a new approach for creating IoT network security monitoring system based
on the principles of parallel processing of security events data. According to this approach, the network
security monitoring system is implemented on Hadoop or Spark platforms as a system for parallel pro-
cessing of Big Data. The architecture of the developed system of this type includes the components
responsible for data collection, storage, aggregation, normalization, analysis and visualization. Data ag-
gregation, normalization, analysis and visualization are carried out “on-the-fly”. The data is stored in a
HDFS distributed file system, which increases the reliability of storage and the speed with which data
requests are processed.

The implementation of the system was performed taking into account the computational limitations
inherent in IoT networks. To carry out the experimental evaluation, input streams were obtained by
combining the streams that generate security events on a fragment of the IoT network with the streams
represented in the external database of traffic in a real computer network. Experimental evaluation of
the developed system showed that, despite the availability of limitations in computing resources, when
it is implemented on Hadoop, the system has a fairly high performance, comparable, and in some cases
significantly exceeding known implementations. When implemented on Spark, the system increases its
performance by about ten times, if it has a sufficient amount of RAM.
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6.1 Future Work

Future studies are directed to the application of the machine learning algorithms to network security
monitoring based on big data distributed processing systems. It is also planned to study the possibility
of using the Flink distributed processing system.
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