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Abstract

Confidentiality and privacy of outsourced data has become one of the pressing challenges in Cloud
computing. Outsourced data often includes sensitive personally identifiable information. When data
is outsourced, sensitive information will not be under the control of its owners, but under the control
of an external service provider. In this paper, we define an approach allowing the protection of confi-
dentiality of sensitive information in outsourced multi-relational databases by improving an existing
approach based on a combination of fragmentation and encryption. Then we define a secure and
effective technique for querying data hosted on several service providers. Finally, we improve the
security of the querying technique in order to protect data confidentiality under a collaborative Cloud
storage service providers model.

Keywords: Data confidentiality, Privacy-preserving, Data fragmentation, Data outsourcing

1 Introduction

Management of large amount of information containing sensitive elements is often expensive. Database
outsourcing in which organizations outsource the storage and management of their collected data to third
party service providers offers a way for these organizations to reduce the cost of controlling complex
information structures.

Database as a service models give rise to two significant challenges. The first challenge is how
service providers protect outsourced databases from not authorized users. A straightforward solution
to protect outsourced databases consists in encrypting data before their outsourcing. Unfortunately,
Querying data becomes in this case expensive (heavy computational overheads) and can be impossible
for several kind of queries. The second challenge is more complex as it concerns the protection of
outsourced databases from the service providers as in this case service providers are not considered to
be fully trusted. Therefore, the main focus of this paper is to preserve outsourced data privacy and
confidentiality while providing a secure and efficient querying technique.
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1.1 Related Work

Thanks to advances in the development of fast encryption algorithms, data encryption has been consid-
ered as the greatest way for protecting outsourced database. One approach to protect confidentiality and
privacy of the outsourced data is based on encrypting all tuples in outsourced databases [2}[3]. Hacigiimiis
et al. [2] have proposed the first approach aiming at query encrypted data. The proposed technique is
based on the definition of a number of buckets on the attribute domain which allow the server-side evalu-
ation of point queries. Hore et al. [4]] improve the bucket-based index methods by presenting an efficient
method for partitioning the domain of attributes. The authors present a way for building an efficient
index, which aims to minimize the number of specious tuples in the result of range and equality queries.
There are also some researches [, 6] proposing an indexing method specific to string attributes. The pro-
posed method improves the hash-based indexing techniques to allow the evaluation of LIKFE condition
directly over encrypted data.

The main drawback of bucket-based and hash-based indexing methods resides on the fact that they
expose data to inference attacks [4,[7,[8,9]. An interesting technique to perform range query is based on
Order Preserving Encryption (OPE) schemes [[10,[11,/12]]. OPE schemes are symmetric-key deterministic
encryption schemes which produce cipher-texts that preserve the order of the plain-texts. Xiao et al. [[13]]
show that OPE ensures data secrecy only if the intruder does not know the domain of original attributes
or the plain-text database.

One crucial question when using encryption-based approaches is how to efficiently execute queries.
Obviously, The use of deterministic encryption techniques permits to evaluate efficiently equality-match
queries. It is however more difficult to perform aggregations and range queries as we have to decrypt
all records to evaluate this kind of queries. As a result, query execution on the outsourced encrypted
data is much more difficult. Thus, in this paper we focus on protecting both confidentiality and privacy
of outsourced database while defining a secure technique for querying outsourced data. One interesting
approach to achieve this requirement is based on the use of data fragmentation. Basically, data fragmen-
tation aims to improve data manipulation process, optimize storage, and facilitate data distribution. It
is not particularly designed for preserving data security. Nevertheless, two significant alternatives have
been proposed in the last few years. The first alternative [[14} [15] relies only on data fragmentation to
protect confidentiality. This approach uses a distribution model composed mainly of two domains: a
honest but curious domain in which the data will be hosted, and a trusted local domain from which the
data originates. The local domain is used to store fragments that contain highly sensitive data without
the need to encrypt them, as it is considered trustworthy. This approach is not so efficient because it
forces data owners to always manage and protect fragments containing highly sensitive data. Aggarwal
et al. [[16] have proposed an approach allowing to protect outsourced data by encrypting only sensitive
attributes and splitting sensitive association among several non-communicating servers. This approach
has a major drawback in that it assumes that servers are non-communicating.

A more interesting approach [17, [18}[19]] is based on combining encryption together with data frag-
mentation. The main idea in this alternative is to fragment the data to be externalized across two or more
independent service providers, and furthermore to encrypt all information which can not be secured by
fragmentation (e.g. employees’ bank account numbers of a company). However, these approaches have a
major limitation as they assume that data to be outsourced is represented within a single relation schema
(or table). Generally, relational databases are normalized to minimize redundancy and dependency by
dividing large tables into smaller (and less redundant) tables and defining relationships between them.
Therefore, assuming that data to be outsourced is represented within a single relation schema is too
strong and seldom satisfied in real environments.
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1.2 Intended Contributions

We aim in this paper to protect the privacy and the confidentiality of sensitive outsourced databases
by combining the best features of fragmentation and encryption. Furthermore, we present an approach
which is able to deal efficiently with multi-relation normalized databases with which we strive to over-
come the previously mentioned limitations of [18| [19]. The problems encountered in one—relatio
databases take on additional complexity when working with multi-relation normalized databases in a
distributed environment, as it gives rise to new problems such as protecting the relationships between
relational schemas (relationships between tuples in distinct tables) and defining a secure and efficient
technique allowing authorized users to query these sensitive relationships. We will present our approach
which uses a practical Private Information Retrieval (PIR) technique allowing to protect data unlinka-
bility of different fragments of the original database by protecting user query privacy. Unlinkability of
two items of interest (e.g., records stored into different fragments) means that within the system, from
an adversary point of view, these items of interest are no more and no less related. In our approach, a
relation containing sensitive information will be fragmented vertically into two or more fragments. Un-
linkability of fragments means that despite the fact that an adversary has knowledge about the fragments
of a relation, he/she remains unable to link records from different fragments. Furthermore, we evaluate
our previously proposed protocol [1]] by presenting some experiments using our developed prototype.
Afterwards, we use hash table data structures to store the information of each fragments instead of using
B+ trees which allows us to improve the effectiveness of the proposed PIR keyword-based technique [1]].

1.3 Paper organization

We proceed by describing in Section 2] the problem and the need for an approach like ours through an ex-
ample. In Section[3] we detail our model architecture, the threat model, security model and assumptions.
After that, we describe in Section [4] our approach to enforce privacy and confidentiality of outsourced
data. Section [5] presents the query optimization and execution model. In Section [§] we present a PIR-
based technique to achieve query privacy and enforce data confidentiality under a collaborative Cloud
storage service providers model. In Section |/, we present the prototype developement and experimenta-
tions we conducted. Finally, we conclude the paper in Section

2 Motivating Scenario

In our working scenario, we strive to protect the confidentiality of an outsourced relational hospital
database 2 composed of two relations (primary keys are underlined and foreign keys indicated by *) :

Patient(Id_P, Name,ZIP, Illness, Id_Doctor *)
Doctor(Id_D, Name, Specialty)

The relationship between the tables Patient and Doctor is defined between the foreign key of the ta-
ble Patient (Id_Doctor) and the primary key of the table Doctor (Id_D). We assume that the database will
be outsourced to a third party. Therefore, sensitive information stored in & should be protected. One
classic solution is to encrypt all information before outsourcing the database, a costly operation. How-
ever, if we look carefully, the list of patients and their attributes (Id_P,Name,Zip) can be considered as
insensitive, and also that the list of illnesses could be made public. Nevertheless, data sensitivity arises
from the relationship between these two lists (list of patients and list of illnesses). Therefore if we can

IDatabases composed from a single relation schema.
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find a way (e.g. vertical fragmentation [20]) to break relationships between patients and their respective
illnesses, there is no need to encrypt all records of the Patient relation. On the other hand, the list of
doctors and the list of patients are not sensitive. However, the relationship between a patient and his
doctor should be protected. The good way to protect the relationship between the two relations Patient
and Doctor consists in encrypting the foreign key Id_Doctor or the primary key Id_D. The encrypting
of the foreign key appears to be more beneficial as a foreign key references only one relation (only the
relationship between the two relations is protected) while a primary key can be referenced by many re-
lations. Therefore, if we encrypt the primary key, we will protect all relationships between the relation
containing the primary key and other relations referencing the encrypted primary key. Thus, when the
security requirement specifies that only the a relationship between data is sensitive, our apporach is more
appropriate than the one based on full encryption.

3 Technical Preliminaries

3.1 Architecture

We consider our architecture of storage and query over distributed fragments illustrated in Figure|l| It is
composed of three main components:

e Users: They are actually database clients who have permission to query outsourced data. To the
Users, all operations which will be used in our approach (e.g., fragmentation and encryption)
in order to protect sensitive data confidentiality are transparent. That is, Users believe that they
interact the original database and form their queries against it.

e Client: It is a trusted party which transform Users queries by splitting them to create an optimized
distributed Query Execution Plan QEP; QEP is a set of sub-queries and other operations (e.g.,
decryption, join...). Based on the Metadata containing information (e.g., relations, clear attributes,
encrypted attributes and selectivity EI of attributes) about data distribution in different fragments,
the Query Transformation module construct a QEP which will be executed.

e Server: It represents different Cloud Storage Providers in which data fragments are distributed.

3.2 Trust and Attack Model

Cloud servers are considered to be the best options for small companies with limited IT budget allowing
to reduce the cost of maintaining computing infrastructure and data-rich applications. However, most of
related works [14} 17, [2,[15] on the confidentiality and privacy of outsourced data considered that Cloud
service providers are “honest-but-curious”. The semi-honest model is the right fit for our approach, as
in this model, the Cloud servers act in an “honest” manner by correctly responding user queries and
following the designated protocol specification. In this paper, we consider that Cloud services providers
have two levels of curiosity: (1) In the first part of this paper, we will assume that service providers
are “curious” in that they will try to infer and analyze outsourced data, and will also actively monitor
all received user queries and try to derive as much information as possible from these queries. (2) In
the second part of the paper, we will further assume that service providers can collude and cooperate
together to link outsourced data. The client part of this architecture is assumed to be trustworthy and all
interactions between the user and the client are secured using existing protocols e.g., SSL.

2 Attribute selectivity is is an estimated number that determines the effectiveness of queries that performs a search over this
attribute.
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Figure 1: Architecture of the Proposed Model

4 Confidentiality using fragmentation and encryption

Our approach extends in several ways the vertical fragmentation-based approach described in [[17, [19].
This approach considers that all data is stored in a single relation, while in our approach data can be stored
in several relations, which is the rule for any typical environments. In our approach, we consider that
databases to be externalized are normalized so that two relations can be only associated together through
a primary key/foreign key relationship. For this purpose, we introduce a new type of confidentiality
constraint for fragmentation, the inter-table fragmentation constraint. The aim of this new fragmentation
constraint is to protect the relationship between relations. This section first presents the different kinds
of confidentiality constraints used to achieve our goals of protecting confidentiality by encryption and
fragmentation, and second formalizes the concept of fragmentation in our approach which extends ideas
presented in [[17, 18} [19].

Definition 1 (Confidentiality Constraint). Consider that data to be secured are represented with a
relational database &, which is composed of a list of relational schemas R = (Ry,...,R,), with each of
these relational schemas R; containing a list of attributes Ag, = (ay j, a2, ...). A confidentiality constraint
over Z can be one of the following:

Singleton Constraint (SC). It is represented as a singleton set SCg, = {a;;} over the relation R;.
This kind of confidentiality constraint means that the attribute a;; of the relational schema R; is sensitive
and must be protected, typically by applying encryption.

Association Constraint (AC). This kind of confidentiality constraint is represented as a subset of at-
tributes ACg, = {a1,...,a j,,-} over the relational schema R;. Semantically, it means that the relationship
between attributes of the subset ACk, is sensitive and must be protected.

Inter-table Constraint (/C). It is represented as a couple of relational schemas IC = {R;,R;} of the
relational database Z. Relations R; and R; must be associated through a primary key/foreign key rela-
tionship. The use of this kind of confidentiality constraint ensures protection of the primary key/foreign
key relationship between the two relational schemas concerned with the inter-table constraint /C.

Note that protecting the relationship between two tables relies on protecting the primary key/foreign
key relationship and storing involved relations on distinct servers of distinct providers. The association
constraint can also be addressed through encryption (encrypt at least one of attributes involved in the con-
straint), but clearly this will increase the number of encrypted attributes and make database interrogation
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more complicated. A more adapted way to resolve this kind of confidentiality constraint was proposed
in [17], which is based on splitting involved attributes in a manner that their relationships cannot be
reconstructed.

In the case of an inter-table confidentiality constraint, protecting the foreign key using encryption
is the simplest way to secure the relationship between the two relational schemas. However encrypting
only the foreign key is not enough to keep the relationship between relational schemas secure, as service
provider may be able to link records in two relational schemas by observing and analyzing user queries
over these relational schemas. To overcome this problem, the two relational schemas involved in that
case should be split into different fragments, and each of these fragments should be distributed to a
different Cloud storage provider. An interesting approach for modeling constraints and resolving the
data fragmentation problem was proposed in [19], that efficiently computes data fragments satisfying
the confidentiality constraints. It is based on Boolean formulas and Ordered Binary Decision Diagrams
(OBDD) and uses only attribute-based confidentiality constraint (Singleton Constraints and Association
Constraints). However, it cannot deal as-is with Inter-table Constraints. In order to use this approach,
we define a way to reformulate Inter-table Constraint as a set of Singleton Constraints and Association
Constraints. We explain this transformation in the definitions and theorems below.

Definition 2 (Inter-table Constraint transformation). Consider a relational database with two rela-
tions Ri(ai,...,a,) and Ro(bi,...,by*). Let us assume that Ry and R» are related through a foreign
key/primary key relationship in which the foreign key b,, of the relation R, references the primary key a;
of relation R;. We assume that R; and R, contain respectively p and g records, with p > 1 and ¢ > 1. An
Inter-table Constraint ¢ = {R;, R, } over relations R| and R; states that the relationship between these two
relations must be protected by encrypting the foreign key b,, and by storing R; and R, in two different
fragments. Therefore, the constraint ¢ can be written as follows:

i A singleton constraint SC = {b,, } to state that the value of b,, should be protected.
ii A list of (m x n) association constraints AC = {(a;,b;)|i € [1,n], j € [1,m]}.

We propose the notion of a correct transformation of Inter-table Constraints. A transformation of
an Inter-table Constraint ¢ to a set of confidentiality constraints C is correct if enforcement of C implies
protection of the unlinkability between records of the two relations involved in ¢. The following Theorem
formalizes this concept.

Theorem 1 (Transformation correctness). Given a relational database 2 made up of two relational
schemas Ry(aj,...,a,) and Ry(by,...,by*) related through relationship between the foreign key b,, of
R; and the primary key a; of R;. Let c = {R},R,} be an Inter-table Constraint, the set of constraints C be
the result of the transformation of ¢, and .# = {F},...F,} be a fragmentation of Z that satisfies C. The
Inter-table Constraint c is correctly transformed into a set of constraints C if all the following conditions
hold :

1. b, does not appear in clear in any fragment of .7.
2. VYAGj=A{ai,bj} €C,icl,n],je[l,m], if a; € F, and b; € F; thenk #1

Proof. According to Item (ii) of Definition 2, the Inter-table Constraint will be replaced by all possible
associations constraint composed from an attribute of relation R; and another from relation R,. Due to
the fact that an association constraint between two attributes means that the relationship between these
attributes will be protected using fragmentation (each attribute will be stored in different fragments),
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Item (ii) guarantees that relations R; and R, will be stored in different fragments which hold condition
2).

Item (i) of Definition 2 creates a singleton constraint over the foreign key b,, of the relation R;. Thus
b, will be considered as a sensitive attribute and will be protected using encryption, which means that
the foreign key b,, will not appear in clear in any fragment. As a result, if an adversary succeeds in
having access to the fragments in which R; and R, have been stored, she is unable to link data stored in
these relations. O

The main advantage of the Inter-table Constraint is that it allows treatment of multi-table relational
databases. In addition, it gives a simple way to formulate confidentiality constraints between relations.
As we have seen in Item (i) of Definition 2, the attribute b,, (foreign key of the relation R,) should be
encrypted. However, to be able to query data and construct relationship between relations, the chosen en-
cryption algorithm must be deterministic [21] in order to preserve uniqueness and allow the construction
of relationship between relations (e.g. through JOIN queries). As is known, in normalized multi-relation
databases, three types of relationship between relations exist: (1) one-to-one, (2) one-to-many and (3)
many-to-many relationships. Inter-table Constraints over relations associated using (1) or (2) can be sim-
ply transformed as shown in Definition 2, while others associated using (3) need a pre-transformation
step before applying the transformation of Definition 2, as they are normally linked through a third rela-
tion known as a linking table. The pre-transformation steps is described in the example below.

Example 4.1 : Consider that we have a hospital relational database 2 with relations :

Patient(/d_patient, Name,ZIP)
Doctor(Id_doctor,Name,Specialty)
Examination(Id_examination,date,medical _report,Id_doctorx,Id _patientx)

Assume that database owner claims that relationships between a patient and his/their doctor(s) are
sensitive and must be secured. Therefore an Inter-table Constraint over relation Patient and Doctor
(IC = {Patient,Doctor}) must be defined. In this case applying directly transformation as shown in
Definition 2 is not possible since relations Patient and Doctor are connected through Examination. So,
the pre-transformation step consists in writing the Inter-table Constraint /C using the linking relation
Examination. Thus, IC will be replaced by IC| = { Patient ,Examination} and IC, = { Doctor, Examination}.
Next, both IC| and IC, will be transformed into a set of Singleton Constraints and Association Con-
straints according to Definition 2.

Definition 3 : Fragmentation [18]

Let us consider a relational database & with relations R, ...,R, and A the list of all attributes contained
in these relations. Given A the list of attributes to be fragmented, the result of the fragmentation is a list
of fragments F = {Fy,...,F,} where each of these fragments satisfies:

i VF,eFic[l.m], F;CAy.
ii VacAp,dF,€F:ackF,.
iii VE,FicF,i# j:FFNF;=0.

Note that the list of attributes to be fragmented A contains all attributes in A, except those concerned
with Singleton Constraints (attributes to be encrypted). Condition (i) guarantees that only attributes in
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Ay are concerned by the fragmentation, condition (ii) ensures that any attribute in Ay appears in clear at
least in one fragment and condition (iii) guarantees unlinkability between different fragments.

Logically, to be able to get information about the original database, we should be able to recon-
struct original database from fragments. So after defining the fragmentation process, we shall define
a mechanism to combine fragmentation and encryption. More precisely, we need a mechanism to inte-
grate attributes involved in the Singleton Constraints (attributes to be encrypted) in the suitable fragment.
These encrypted attributes allow only authorized users (users who know the encryption key) to construct
the sensitive relationships. Based on the definition of Physical fragment proposed in [[17]], we define our
mechanism called Secure fragment to combine fragmentation and encryption.

Definition 4 (Secure Fragment) . Let Z be a relational database with a list of relations R = {R; (ay 1,
vy @j1)s-- o Ryaip, .. ar,)}, F ={F,...,F,} afragmentation of D and A be the list of fragmented
attributes. Each fragment F; € F is a new relation whose attributes are a subset A; C Ay. Each A;
is composed of a subset of attributes of one or more relations R; € R. We denote by Rf, the list of
relations in R such that a subset of their attributes belongs to the fragment F; € F. The secure fragment
of F; is represented by a set of relations schema Rj in which each relation is represented as follows
R;(@, enc,ai,...,a;) where {ai,...,ar} C A;NR; and enc is the encryption of all attributes of R;
that do not belong to {aj,...,a;} (all attributes of R; involved in a singleton constraint except those
concerned by a singleton constraint over the foreign key), combined before encryption in a binary XOR
with the salt. All foreign key attributes which are involved in singleton constraints are encrypted using a
deterministic encryption algorithm (e.g., AES) to ensure their indistinguishability.

Algorithm (1| shows the construction of secure fragments.The main reason for reporting all origi-
nal attributes (except foreign keys involved in the Singleton constraints) in an encrypted form for each
relation in a fragment, is to guarantee that a query Q over the original relation R; can be executed by
querying a single fragment (which contains R}) while preserving confidentiality of sensitive relation-
ships, so we do not need to reconstruct the original relation R; to perform the query Q. Furthermore,
encrypting foreign keys ensure the protection of sensitive relationships between relations involved into
Inter-table Constraints. However, using deterministic encryption algorithm has two issues. First, a major
advantage is to enforce indistinguishability of records which allows only authorized users who know the
encryption key to execute queries associating these relations. Second, a minor drawback is that it allows
an adversary to infer information about repeatedly occurring values of the encrypted foreign keys, but
this information does not allow the adversary to break the unlinkability between relations.

The attribute salt which is used as a primary key of different relations in the secure fragments protects
encrypted data against frequential attacks. In addition, there is no need to secure the salt attribute because
knowledge of the value of this attribute will not give any advantage when attacking encrypted data.

Example 4.2. Assume that we have a relational database 2 of a medical insurance company that
contains two relations Patient and Doctor represented respectively in Table[I|and Table[2] The insurance
company has defined a set of confidentiality constraints CC = {C; = {SSN},C, = {Name_pat,Illness},
Cs = {Patient,Doctor} }.

As shown before, the first step in the fragmentation process consists in transforming Inter-table Con-
straint (C3). Relations Patient and Doctor are linked through the foreign key Id_doc in the relation
Patient, therefore C3 will be replaced by C4 = {Id_doc} and all possible Association constraints com-
posed of an attribute of the relation Doctor and an attribute of the relation Patient (guarantee that the
relation Patient will not be in the same fragment as the relation Doctor). In our example, attributes SSN
and /d_doc of the relation Patient are involved in singleton constraints C; and Cy4 respectively. So they
will not be concerned by the fragmentation. As a result C3 will be replaced by :
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input :
2 ={Ry,Ry,- - ,R,} /* Normalized relational database */
€ ={C),Ca,-+,Cp} I* Confidentiality constraints */
output:
F* ={F/,F},--- ,F;} I*The set of secure fragments*/

€y ={Ci € € :|Ci| > 1} /* The list of association constraints */
ey ={a € C;,C; € € : |Gj| = 1 and isForeignKey(a) = True}
I* @srey - The set of foreign keys to be encrypted*/

/* Fragmentation */
7 .= Fragment(2, %)
foreach F; = {q; ,a;,, - ,a;,} in F do
R = classifyAttributes(F;) /* Classify the attributes according to their original relation.*/
foreach Ry, in %y do
foreach r in Ry, do
/* 1 : record */
r*[salt] := GenerateSalt(R.,r)
Plenc] := & (tlajy,--- a;,] @ r’[salt])
*aj, a5, =Ri—Rp ¥
foreach a in Ry, do
/* a: attribute */
rla] == rld]
endfch
foreach a in Ay, do

if a € R; then

‘ /* a: the foreign key of the relation R; */
Pla) = &(rla))

end
endfch
InsertRecord(*, R*)
endfch
AddRelationToFragment(R®, F*)
endfch
endfch
Algorithm 1: Secure fragmentation
Table 1: Patient relation Table 2: Doctor relation
SSN Name_pat \ Dob Illness \ Id_doc ‘ ] Id_doctor \ Name_doc
865746129 | A. Barrett | 20-08-1976 | Illness; | doc_3 doc_1 C. Amalia
591674603 | C. Beat 18-01-1981 | Illness, | doc_3 doc_2 D. Annli
880951264 | N. Baines | 14-09-1986 | Illness; | doc_2 doc_3 P. Amadeus
357951648 | S. Brandt | 18-01-1981 | Illnesss | doc_1

o Cy = {ld_doc}

e Cs = {Name_pat,Id _doctor}
e Co = {Name_pat,Name _doc}
e C; = {Dob,Id _doctor}

e C3 = {Dob,Name_doc}
e Cy = {lIllness,Id_doctor}
o Cyo = {Illness,Name_doc}

A possible fragmentation of & that satisfies all confidentiality constraints is the set of fragments
{F|,F,,F3} with: F; = {Patient(Name_pat,Dob)}, F, = { Patient (Illness) } and F3 = { Doctor(Id_doctor,
Name_doc)}. Next step is the Secure fragmentation transformation (Definition 3). We assume that en-
cryption of the protected attributes uses the deterministic encryption algorithm E with the encryption key
K. The result of applying the SecureFragmentation over different fragments is represented as follows.

Note that F3 has not been changed because there is no singleton constraints over the Doctor attributes.
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e F) : Patient(salt,enc,Name_pat,Dob,Ey(Id_doc)) with enc = Ex((SSN,IlIness) @ salt)
o F, : Patient(salt,enc,Iliness,Ex(Id_doc)) with enc = Eg((SSN,Name_pat,Dob) @ salt)
e F5: Doctor(Id_doctor,Name_doc)

Figure 2: Secure Fragmentation Results

Lastly data fragments F7, F; and F3 are distributed to different Cloud storage providers.

S Query Transformation and Optimization

In our querying model, query transformation is performed by the Query Transformation (QT) module on
the client side. When receiving a user query, the query is analyzed syntactically and semantically so that
incorrect queries are rejected as earlier as possible. Next, based on the Metadata stored on the client side,
the QT will attempt to find a fragment on which the user query can be executed, i.e. a fragment in which
QT can find all attributes and relations involved in the user query. If such a fragment does not exist, QT
will decompose the user query into queries expressed in relational algebra, find out which fragments are
involved in the query, and finally transform the user query into a set of fragments queries. Using this
set of fragment queries and other operations such as encryption, decryption, join and aggregation, the
QT creates a QEP and sends it to the Query Executor. The algorithm [2] shows the query validation,
transformation and optimization process.

Example 5.1 (One-fragment query): Assume that we have a relational database & that contains two
relations Patient and Doctor represented respectively in Table |l and Table [2} The fragmentation of ¥ is
the list of fragments represented in Figure[2] Consider the following user query:

Q1 : SELECT Name pat, SSN
FROM patient
WHERE Dob=’1986-09-14°
And Illness = ’Illnessl’;

Q01 can be executed over either F; or F, fragments as all attributes required by Q1 can be found (in
clear or encrypted form) in both fragments.
e QEP; for Q1 over Fj :

Ql; : SELECT Name_pat, salt, enc
FROM patient
WHERE Dob=’1986-09-14";
Dec:  Decrypt(Result(Q11),Key) = R (Q1,)
Ql, : SELECT Name_pat, SSN
FROM RY(Q1;)
WHERE Illness = ’Illnessl’;

e QEP; for Q1 over F; :

48



Preserving Multi-relational Outsourced Databases Confidentiality Mokhov, Sutcliffe, and Voronkov

input :
) /* User Query */
M /* Metadata */
output:
QEP  /*Query execution plan*/

(tables,attributes, conditions) = decomposeQuery(Q)
syntacticChecking(Q) /* Verify that keywords, object names, operators, delimiters are placed correctly in the query*/
/* Semantic Checking */
if tables € M or attributes ¢ M then
| rejectQeury(Q)
end
foreach (attribute,operator,value) in conditions do
if lisT heSameType(attribute,value) or \match(operator,value) then
| rejectQeury(Q)
end
endfch
/* Checking if there is a fragment on which the query can be directly executed */
F = getFragmentSchema(M)
foreach fragin .7 do
Tfrqg = getTables(frag)
Afrag = getAttributes(frag)
A, = getAttributesFromConditions(Conditions)
if tables Z Tyqq or attributes € Ajgrae or A £ Afrqg then
| continue
end
/* Checking if all conditions attributes are not encrypted in the fragment frag*/
if areEncrpted(A., frag) then
| continue
end
/*The query Q can be executed on the fragment frag */
addOperation(QEP, (Q.frag))
foreach attrin Ay, do
if isEncrpted (attr, frag) then
| addOperation(QEP, (Decryption,attr))
end
endfch
return QEP
endfch

/* Multi Fragment Query*/
/* Get the fragments in which conditions attributes are not encrypted */
A, = getAttributesFromConditions(Conditions)
AL = sortAttributeBySelectivity(M,A.) I* Sort attributes according to their selectivity*/
foreach attrin A do
Fur = containsInClear(M, attr) /* Set of fragments on which artr appears in clear text*/
frag = getBestFragment (Fy,,) I* Get the best fragment which contains the less number of encrypted attributes */
A = listOfRetrievedAttributes(frag,attributes) /* The list of attributes that can be retrieved by querying the fragment frag */
SQ = formulateT heSubQuery(A,attr,Q)
addOperation(QEP,(Q, frag))
foreach a in A do

if isEncrpted(a, frag) then

| addOperation(QEP, (Decryption,a))

end
endfch
endfch
/*Add the join operation that combines results returned from subqueries*/
addOperation(QEP, join)

Algorithm 2: Query validation and transformation process
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Ql; : SELECT salt, enc

FROM patient

WHERE Illness = ’Illnessl’;
Dec:  Decrypt(Result(Q11),Key) = R (Q1,)
Ql, : SELECT Name pat, SSN

FROM RY(Q1,)

WHERE Dob=’1986-09-14";

As we can see, a query can have more that one QEP. Logically, each QEP may have a different exe-
cution cost. Thus, the QT should have the capability to pick out the best QEP in terms of execution cost.
This capability is explained later in the Query Optimization section.

For multi-fragment quer QT will use local join operations as it should combine results of execution
of subqueries over fragments. There are two different ways to perform local join operation : (1) Execute
all sub-queries in a parallel manner, then join the result on the client side. (2) Execute sub-queries in a
sequential manner to have the ability to perform semi- joins [22] using the result of previous sub-queries.
While (1) can be cheaper than (2) in terms of sub-query execution, it is much more costly in the join
operation because in (1), sub-queries results might contain a lot of records that will not be part of the
final results.

Example 5.2 (Multi-fragment query): Assume that we will use the same database & and fragments
used in Example 5.1. Consider the query :

Q2 : SELECT Name_pat, Name_doc
FROM patient, doctor
WHERE Dob=’1986-09-14"

A possible QEP for Q2 can be :

Q2,(F1) : SELECT Name pat, Ei(Id_doc)
FROM patient
WHERE Dob = ’1986-09-14";
Dec: Decrypt(E(Id_doc),Key) =
02,(F3) : SELECT Name_doc
FROM doctor
WHERE Id_doctor IN §;
Join : Result(Q2;) < Result(Q2,)

Since the relationship between the two relations Patient and Doctor is protected, these relations are
stored in different fragments. Therefore, the query Q2 is decomposed into two sub-queries 02 and 02,
executed respectively over fragments F; and F3.

In addition to traditional query optimization methods such as selecting conditions as earlier as pos-
sible, the QT attempts to minimize the execution cost of the created QEP by applying the selection
condition with the most selective attribute, i.e the selection condition which is satisfied by the smallest
number of tuples. To give this ability to the QT, we assign a selectivity and an average attribute-value
size (AVS) to each attribute contained in the original database to the Metadata stored in the Client. The
selectivity of an attribute is the ratio of the number of distinct values to the total number of rows.

Selectivit DistinctValues W
electivity =
4 TotalNumberRows

3i.e. a query that cannot be executed over only one fragment.
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In distributed databases, they may exist several strategies for each query due to the fact that data are
stored in different sites. One way to choose the best strategy is based on calculating the expected cost
which should include corresponding evaluation and communication cost. The formula of a point query
execution costs can be estimated roughly as follows:

Query execution cost = Cg X NbExRow + Cr X NbE st Row )

Cr represents the evaluation cost of a record, Cr is for the transmission cost of a record, NbExRow is
the number of rows examined and NbEstRow is for the estimated number of returned rows which is
calculated as follows :

1
NbEstRow = ——— (3
Selectivity
Using the average attribute-value size (AVS) of encrypted attribute enc, we can estimate the execution

costs of the decryption operation as follows :
Decryption cost = Cp X AVS x Number of rows 4)

Cp represents an estimation of the per-byte decryption costs of the used encryption schemes.

Example 5.3 : Assume that we use the same database & and fragments of Example 5.1. Let us suppose
that the relation patient contains 10° tuples and the selectivity estimation of the attribute Dob is 0.14 and
for Illness it is 8 x 10~*. We suppose also that AVS; = 252 and AV'S, = 152 are respectively the average
attribute-value sizes of encrypted attribute enc of the table patient stored in the fragments F; and F,.
Consider the query Q1 used in the Example 5.1. As shown before, there are two possible QEP for this
query. Using (2), (3) and (4) the QT will compute the approximative execution cost for each QEP as
shown below :

QEP, execution cost = Cg X 10° +Cr xT+Cp x252xT+Cg X7
QEP; execution cost = Cg X 10° +Cr x 12504+ Cp x 152 x 1250+ Cg x 1250

After computing the approximative execution cost of each QEP, the QT will select the best one in
terms of execution cost. In our example, QEP; has the lowest execution cost.

6 Preserving Data Unlinkability

Ensuring data confidentiality is achieved by preserving unlinkability between different data fragments
and by encrypting all sensitive information that cannot be protected using only fragmentation. However,
we have seen in the previous section that evaluation of some queries may use semi join in order to join
data from different fragments. This will not be a concern in the case of non-colluding Cloud storage
providers, but it becomes a serious security and privacy problem when Cloud Storage Providers (CSP)
can collude. In this section, we present our solution to overcome this privacy concern when we assume
that CSP can collude to link data stored in different fragments.

Example 6.1: Consider the database, fragments, queries and QEP used in the Example 5.2. The QEP
is executed in a sequential manner by the QueryExecutor. The next table shows the execution of the QEP.
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Operation Result
02, execution over Fy :  (N.Baines, Ex(doc2))
Decryption : 0 = {Decryption(Ey(doc2))}

02, execution over F3 :  (D.Annli)

Assume that F] and F3 are distributed respectively in CSP; and CSP3; which will try together to link
tuples stored in the two fragments by correlating the history of user queries, their execution time and their
respective responses. In our example, CSP; will disclose that a client has executed Q2 to retrieve the
tuple (N.Baines, Ex(doc_2)) at the time ¢, while CSP3 will disclose that the same client has executed 02,
to retrieve (D.Annli) at the time 7 4 n. Using this information, CSP; might be able to infer that E;(doc_2)
is the encrypted value of *doc_2’. Therefore CSP; can associate all patients having Id_doc ="Ey(doc_2)’
to the doctor whose name is *N.Baines’.

To overcome this problem, the Client should have the ability to execute semi join queries and re-
trieve data from a fragment without the CSP (which stores the fragment) learning any information about
the semi join condition values. To meet this requirement, we will use a Private Information Retrieval
keyword-based technique. PIR keyword-based was presented in [23]] to retrieve data with PIR using
keywords search over many data structures such as binary trees and perfect hashing. In the next part of
this paper, we will explain how we can use PIR keyword-based technique to ensure our semi join queries
privacy requirement.

6.1 PIR System design

In the Client of our architecture, we give to Query Executor the ability to communicate with different
Cloud storage providers through the PIR keyword-based protocol. In the Server, we add on each CSP a
PIR Server as a front-end entity to answer Query Executor’s PIR queries. An adversary (a Cloud stor-
age provider administrator) who can observe Query Executor’s PIR-encoded queries is unable to find
out the clear content of the queries. Enforcing integrity on the PIR server side is straightforward since
we assume that PIR servers will not attempt to wrongly answer Query Executor’s PIR queries.

The main purpose for using PIR keyword-based is to ensure the privacy of semi join queries. In our
approach, this kind of queries is mainly executed over primary or foreign key attributes. In all existing
PIR schemes, a common assumption is that the client should know the address of the block or the item to
be retrieved. To satisfy this assumption in our approach, the PIR server will create an indexed structure
over each indexed attributes in the database. Therefore, We implement over these attributes two types
of indices: B+ trees [24] and hash tables [25]. In the following subsections, we present then discuss the
PIR keyword-based protocol using both index structures.

6.1.1 PIR based on B+ Trees

Private Block Retrieval (PBR) is a practical extension of PIR in which a user retrieves an n-bit block
instead of retrieving only a single bit. Therefore, to be able to use B+ tree structure with the PBR, we
consider each node or leaf in the B+ trees as a data block. However, in most cases, B+ tree nodes and
leaves do not have the same size, so they cannot be used directly as all PBR approaches require that data
blocks are of equal size. Thus, a required stage consists in adding padding data to nodes and leaves in
order to have the same size for all B+ tree elements.

Using the PIR keyword-based query requires a setup phase in which the Query Executor and the
PIR server exchange information. This setup phase is divided into two steps:
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1. The Query Executor sends to the corresponding PIR server the Relation schema name and the
attribute name over which the semi join query has to be performed.

2. When receiving the Relation schema name and the attribute name, the PIR server selects the
corresponding B+ tree and sends its root node to the Query Executor.

After receiving the root node sent by the PIR server, the Query Executor will compare the list of keys
contained in the root node with values used in the condition of the Semi join query in order to find
out the indexes of the next nodes to be retrieved. The Query Executor will subsequently perform PIR
queries over chosen indexes to retrieve corresponding nodes. Once all items have been retrieved, the
Query Executor combines them to build the result of the original Semi join query. Refer to Algorithm
and Algorithm ] for a description of the PIR keyword-based protocol algorithms used in the Server
and the Client parts. We illustrate the execution of a semi-Join query using the PIR keyword-based in
the example below.

input :
BPT ={By,...,B,} /* B-Plus Tree over indexed attributes*/
while True do
Request < handle_client _request ()
if Request is POR then
/* PQR : Pre-Query Request */
(TabName, AttriName) < Request
B « GetAssociatedBPT (TabName, AttriName)
Rootg < GetRootNode(B)
ReplyToClient(Rootg)
end
f Request is PIRQ then
/* PIRQ : PIR Query */
result <— compute(Request)
ReplyToClient (result)

-

end
end
Algorithm 3: SemiJoin PIR keywordbased query (server)
input :
tabName,attrName /* Table and Attribute where the semi-join will be performed */
value /* Semi-join condition value */

Node < send_PQR _request(tabName, attrName)
while Node is not leaf-node do
foreach elem in Node do
findLink < False
if Key(elem) < value then
Node < PIR_Query(IndexOfLeftChild(elem))
findLink < True
break
end
endfch
if findLink = False then
| Node < PIR_Query(IndexO fRightChild(elem))
end
end
foreach elem in Node do
if Key(elem) = value then
| return Data(elem)
end
endfch

Algorithm 4: SemiJoin PIR keywordbased query (client)

Example 6.2 : Consider the query 02, used in Example 5.2. We suppose that 6 = {doc_3,doc_69}.
the execution of 02, using PIR keyword-based protocol over B+ trees data structures is as follows:
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1. The Query Executor sends (Doctor,Id_doctor) to the PIR server.

2. The PIR server sends the root node of the B+ tree corresponding to the received (Doctor,Id _doctor).
Suppose that this root node is as presented in the table below

i] doc_11 iQ doc5 i3
[] ° °

Note that i, i», i3 are the indexes to the next level nodes. doc_11 and doc_5 are the root node
keys.

3. The Query Executor compares the elements of § with the received nodes keys, the type of the
elements of 0 and the root node keys is String.

(a) The Query Executor wants to retrieve the node containing the key doc_3, due to the fact
that doc_11 < doc_3 < doc_5 and based on the received root node, the Query Executor will
retrieve the node indexed by i5.

(b) The Query Executor needs also to retrieve the node containing the key doc_19, seeing that
doc 5 < doc_69 and based on the received root node, the Query Executor will retrieve the
node indexed by i3.

For each index to be retrieved i;, the Query Executor sends an encoded PIR query PIR(i;) to the
PIR server. This process will be executed until the leaves of the B+ tree are reached. From the re-
trieved leaves, the Query Executor gathers tuples in which their keys are element of {doc_3,doc_69}.

Theorem 2. Let & be a multi-relation normalized database, .# = {F;,F>} be a fragmentation of &,
and Q be a multi-fragment query that joins records from both fragments F] and F;,. Consider that SCPs in
which the fragments F| and F; are stored can collude to link data stored in these fragments, and that Q is
evaluated using semi join operations. Sensitive relationships between F; records and F, records remain
protected if and only if the privacy of the semi join sub-queries is guaranteed.

Proof. To prove the Theorem 2, we will use the following two sketches. The fist sketch proves that
without ensuring semi join sub-queries privacy, collaborative CSPs can, in some cases, break data un-
linkability, while the second sketch proves that, under a collaborative Cloud storage service providers
model, protecting data unlinkability can only be guaranteed with the protection of the privacy of the
semi join sub-queries.

SKETCH without using the PIR keyword-based protocol: Suppose that the Cient wants to exe-
cute a query which joins records from two fragments F; and F,. Let us consider that the sub-query Q
executed over the fragment F; has returned n tuples. And the semi-join query O, executed over F, has
returned m tuples. Therefore, if CSPs that store F; and F; collude together to link tuples from Q; and Q»
results, the probability to guess correctly the relationship between tuples is:

PROBIResult(Q1) <+ Result(Q,)] =

mxn

Clearly, if m and n are small, CSPs will have a great chance to break data unlinkability.

SKETCH using the PIR keyword-based protocol: Let us consider that the Client attempts to
perform a query which joins records from two fragments F; and F,. According to our defined PIR
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keyword-based protocol, the Client will execute O over the fragment F; without using the keyword-
based protocol. Next, the Client will send the table name 7 and the attribute name a on which the
semi-join will be performed, the Server replies with the root node of the corresponding B+ tree. It is
clear from the previous step that the CSP which stores F> can only know the attribute name and the table
name on which the semi-join will be performed. After receiving the root node, the Client will use the
PIR protocol to retrieve internal corresponding nodes until the leaves of the B+ tree are reached. The PIR
protocol will ensure that the server will not know which nodes were retrieved by the Client. Moreover,
all tuples are stored in the leaf level of the B+ tree. Therefore, in order to retrieve each record, the Client
shall execute the same number of PIR queries. Rightfully, the only revealed information when using the
PIR keyword-based protocol is the table name and the attribute name on which the semi-join has been
performed. Therefore, if CSPs storing F; and F; collude together to break data unlinkability, they will
be able only to infer that the relation 77 in F; over which O has been executed is linked to the relation
T through the attribute a. Due to the fact that the foreign key in 7] referencing the attribute a in T is
encrypted, linking records is not possible. O

The particularity of B+ tree structures is that data appears only in the leaves while internal nodes
is mainly used to guide the search. B+ tree’s leaves are linked together to simplify sequential data
access which gives the ability to perform in an efficient manner cardinality queries and range queries.
However, the use of B+ tree data structure presents two disadvantages : first, as we have shown in the
previous example, the Query Executor will use PIR queries to run down the tree and privately retrieve
blocks (leaves) which contain records that match the semi-join condition. In each layer of the B+ tree,
Query Executor should send a PIR query to the PIR server to get the addresses of the next layer nodes
to be retrieved. Thus, for a k-layers B+ tree, Query Executor needs at least k PIR queries to reach the
leaf layer, which is expensive in terms of communication and execution time. Second, several records
which will not be part of the final result of the semi join query will be retrieved as a B+ tree leaf may
contain several records having different index values.

6.1.2 PIR based on Hash Table

Hash table is a data structure that implements a mapping form keys to values. It is represented by an
array in which data is accessed through a special index. The idea behind using hash tables is to map the
indexed attribute (Primary key or foreign key) values to the set of corresponding records. These indexed
attribute values will be the keywords which are used to search corresponding records stored in the hash
tables. Hash tables are composed of set of sequential hash buckets. We will consider each set of records
having the same keyword (indexed attribute value) as an hash buckets. The index of each bucket in the
hash table is calculated using a minimal perfect hash function [26] that maps n keywords to n consecutive
integers.

We describe the use of hash table with the protocol PIR to perform semi join queries with the fol-
lowing four steps :

e Setup step — The PIR server create an hash table over each indexed attributes of the database.
This stage is carried out only once as created hash tables will be used for subsequent semi join
queries.

e Step 1 —The Query Executor sends to the PIR server the name of the table and the name of the
attribute on which the semi join is performed.

e Step 2 — PIR server picks up the hash tree corresponding to the received couple (table, attribute)
on which the semi join is performed and sends back to the Query Executor a set of metadata
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allowing the construction of the minimal perfect hash function used for building the corresponding
hash table.

e Step 3 — Using the received metadata, the Query Executor derives the minimal perfect hash
function and calculates for each constant value in the semi join condition, the corresponding bucket
index in which records corresponding to that constant value are stored. These calculated indexes
are also the blocks numbers in the hash table index on the server. Next, the Query Executor will
use PIR query to retrieve data blocks having the calculated indexes.

The advantage behind using hash tables lies in the fact that only one PIR query is needed to retrieve a
data bloc instead of n PIR query when using a B+ tree (n represents the height of the B+ tree). Moreover,
using hash tables, retrieved blocks will contain only records that match the original query of the user.

Example 6.3 : Consider the query 02, used in Example 5.2. We suppose that § = {doc_3,doc_69}.
the execution of 02, using PIR keyword-based protocol over Hash tables data structures is as follows:

1. The Query Executor sends (Doctor,Id _doctor) to the PIR server.

2. The PIR server sends to the Query Executor a set of metadata allowing the construction of the
minimal perfect hash function f used for building the corresponding hash table.

3. Using received minimal perfect hash function f, the Query Executor computes for each element
in 8, the corresponding block index in which records corresponding to that element are stored.
Suppose that f(doc_3) = i; and f(doc_69) = iy, the Query Executor sends to the PIR server
PIR(Doctor,iy) and PIR(Doctor,i,) to privately retrieve blocks having indexes i; and i,.

7 Implementation and Evaluation

We have developed a prototype for our approach, it is composed mainly from two main components: (1)
A Client entity written in C++. Using regular expression offered by the boost library [27], we give the
ability to the client Entity to transform received queries into a QEP. Further, the Client uses the Crypto++
library [28] to perform different cryptographic operations. (2) The server entity. For the Server entity,
we have used STX B+ Tree [29] and CMPH (C Minimal Perfect Hash) [30, 31]] libraries to build and
manipulate B+ tree and hash tables structures used by the PIR protocol. To give PIR functionality
to the Server entity, we have used Percy++ [32, 33]]. Finally, for relational database server we used
MySQL [34].

7.1 Experimental Design

For our benchmarking, we used the relational database schema D composed of three relations as follows:

Patient(/d_patient, Name,SSN,Dob, Gender,ZIP, IlIness)
Doctor(Id_doctor,Name,Specialty)
Examination(/d_examination,date,medical _report,Id_docx,ld_patx)

Note that the attributes Id_doc* and Id_pat* are two foreign keys that reference respectively the primary
key of the table Patient (Id_patient) and the primary key of the table Examination (Id_examination).

In tables Patient, Doctor and Examination, we inserted respectively 10, 10° and 10’ records. Frag-
ments schemes obtained from the application of our secure fragmentation algorithm are represented
below:
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F, : Patient(salt,enc,Id_patient,Name,Dob,Gender,ZIP)
Doctor(Id_doctor,Name, Specialty)

F, : Examination(/d_examination,date,medical report,E;(Id_doc)*,Ey(Id_patx))

Fs: Patient(salt,enc,Illness)

As we have previously seen, our approach is based on vertical fragmentation, the fragments of the
table patient which are stored in F; and F3 will be also composed of 10° records. Normally, each fragment
F1, F> and F5 of the database & should be stored in a different Service Provider. In our experiments, we
used three virtual machines, with each representing a Service Provider and running MySQL 5.5.31. All
experimentations have been performed on an eight cores server (Intel(R) Xeon(R) CPU x5355, 2.66
GHz) with 12 GB of RAM and running Ubuntu Linux 10.04.

7.2 Evaluation

As we have seen in the section [5} two kinds of queries can be used in order to query distributed fragments:
(1) Queries that can be executed over only one fragment. (2) Queries which require the interrogation of
several fragments to be evaluated. To evaluate the efficiency of our approach, we tested for each kind
of query, and according to the number of retrieved records, the time required to execute the query. To
evaluate the query of the type (1), we used the query Exp_Q1 :

Exp_Q1 : SELECT Name, SSN, Dob
FROM patient
WHERE Gender = ’Male’

According to the used Fragments schemes, Exp_Q1 is executed over the fragment F;. To be able to
control the number of returned records, we used the clause SQL LIMIT (LIMIT O, number_of _record).
The Figure |3|shows the execution costs per number of retrieved records. Note that in all experiments the
cost of data transfer between the Server and the Client is negligible because both parties are installed in
the same experimentation server.
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Number of retrieved records

Figure 3: Execution costs per number of retrieved records for the query Exp_-Q1
For queries of the type (2), our approach will use semi_join with the PIR keyword-based protocol in

order to join fragmented data while preserving the protection of sensitive associations. In this case, two
kinds of data structure can be used : B+ tree and hash table.
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Figure 4: Execution costs per number of retrieved records for the query Exp_Q1 over B+ Tree and Hash
Table data structures

For a better comparaison of the use of B+ trees and Hash tables with the keyword-based PIR, we
executed the query Exp_Q2 using the keyword-based PIR over both data structures.

Exp Q2 : SELECT Name_pat, SSN
FROM patient, examination e
WHERE e.date= 7x

Figure M| compares the processing costs for the query Exp_Q1 using the keyword-based PIR over
both data structures.

We make the following observations. First, as expected, the use of hash tables as the data structures
used by the PIR keyword-based in order to perform semi join queries is much more efficient compared
to the use of B+ trees with the PIR keyword-based. This can be explained by the fact that in the case
of B+ tree, the Client must run down the tree using a PIR query in each level of the tree to retrieve
data blocks stored in the leaf level of the B+ tree. While, in the case of hash tables, the Client needs
to perform only one PIR query to get the data block containing requested records. For instance, the
height of the corresponding B+ tree of the table Patient is 5, then the Client must perform 5 PIR queries
to be able to retrieve corresponding records. Second, another reason to the inefficiency of the use of
B+ trees compared to the use of hash tables with the PIR keyword-based is due to the fact that the
size of constructed B+ trees are much more bigger than constructed hash tables which will introduce an
execution overhead when performing PIR queries.

8 Conclusion

In this paper, we have presented an approach based on fragmentation, encryption and query privacy
techniques enabling privacy-preserving of outsourced multi-relation databases. We presented different
techniques that we have used to decompose multi-relational databases in the aim to protect sensitive
associations, then we demonstrate how our decomposition techniques help in achieving data confiden-
tiality. We presented a querying technique that optimizes and executes queries in this distributed system
and how we can improve the security of the querying technique in order to protect data confidentiality
under a collaborative Cloud storage service providers model. Our future work include enhanced query
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optimization and execution techniques to overcome some limitations of our approach, such as processing
nested queries.
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