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Abstract The properties of quantum solid solutions are investigated theoretically taking into
account the interaction between waves of different nature: phonons and impuritons. The wave’s
interaction leads to a nonlinear Schrodinger equation that describes soliton - the impuriton-phonon,
a new quasiparticle. As shown, the impuriton-phonons have velocity comparable to sound speed.
Under heat step at the inclusion-matrix boundary a chemical potential step is formed. This leads
to transition of 3He atoms into the matrix with one of the following mechanisms: (i) phonon
emission and band movement of the impuriton; (ii) threshold emission of the impuriton-phonon
(the photoelectric effect analogy). It is shown that the narrow impuriton band cannot describe the
rapid movement of the impuriton-phonon quasiparticle; alternative descriptions, channeling and
induced transformation of the band, are proposed. It qualitatively explains the experiments with
rapid dissolution of the 3He phase inclusion in the 4He matrix.

Keywords: Solid helium, quantum tunneling of defects, matter waves, phonon interactions with
other quasi-particles.

1 Introduction

Quantum solutions 3He-4He demonstrate unusual set of properties in the crystalline state [1]. In solid
helium existence of specific quasiparticles, defectons (point defect in the 4He matrix), was predicted in [2].
Impuritons (light impurity 3He atom in the 4He matrix), and vacancions (vacancies in the 4He matrix)
are the defectons. The impuritons were found in experiment [3]. In the classic crystal, diffusion takes place
by rare jumps between neighboring sites [4,5]. In quantum 4He crystal the impurities and the vacancies
are delocalized due to quantum tunneling. Band motion of the defectons is possible similarly to electron
motion in the conduction band [2,4]. It is also known as "mass fluctuation waves" [6].

Quantum diffusion of 3He impuritons in solid 4He was found, see [7,8]. In solid solutions at low
temperatures, the nucleation of a new 3He phase in the 4He matrix leads to a new quantum transport
phenomena that have been studied experimentally (see review [8]). Special interest is the rapid dissolution
(fast decay) of the 3He phase nucleation under heating above the phase separation on T − x diagram.
This is a threshold effect: in the case of overheating ∆T > ∆Tc = 25mK (close to the point Ti = 100mK,
x = 3− 4%) dissolution rate of the nucleation increases by several orders of magnitude [9,10,11]. Here T
and x are temperature and the 3He concentration. This threshold effect cannot be explained within the
frames of the existing theory of quantum diffusion in volume [12,13] and in twin boundary [14].

Vacancion-phonon interaction was considered as one of the alternative explanations of an unusual
phonon dispersion law found in neutron diffraction experiments in 4He [15]. Vacancion-phonon Interaction
was theoretically investigated in [16,17,18]. Impuriton-phonon interaction (scattering) was found in the
experiment [19].

In this paper, the interaction of sound waves and impuritons and its role in the very rapid dissolution
of nuclei in the quantum solid solutions 3He-4He are investigated. We introduce a new quasiparticle,
impuriton-phonon, which moves at high velocity (comparable to the sound speed). The new quasiparticle
allows us to describe the very rapid dissolution of the nuclei in the solid solutions of quantum crystals
3He-4He.

The paper consists of the following sections. The second section deals with the properties of non-
interacting impuritons and phonons; equations which take into account their interaction are obtained. In
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the third section the new quasiparticle impuriton-phonon is introduced. In the fourth section, dynamics
of chemical potentials in different phases is considered as the driving force of the transition and rapid
dissolution under the overheating. In the fifth section, different mechanisms of 3He atoms transition from
the nucleation into the matrix are investigated, the threshold generation mechanism of the impuriton-
phonon quasiparticles is described; the experimental and theoretical parameters are related. Photoelectric
effect analogy with the threshold generation mechanism of the impuriton-phonon quasiparticle is analyzed
in the sixth section. In the seventh section, the theoretical model parameters are estimated from the
experimental data; the applicability of the approximations and analogies with other quasi-particles are
discussed; high-velocity is obtained. In the conclusion section, the main results are summarized briefly.

2 Lattice and Impuritons Subsystems and Their Interaction

Lagrangian of the system is:
L = LL + LImp + Lint. (1)

Here LL, LImp, and Lint describe lattice, impurities, and their interaction, respectively.

2.1 Lattice Elasticity and Vibrational Spectrum

Long-wave description of the displacements in the crystal coincides with the dynamic equations of elasticity
theory [4]. Stress and strain states of a crystal in the presence of external forces are defined by dynamic
equations for elastic medium [4]

ρ
∂2ui
∂t2

= ∇kσki + fi. (2)

where u is displacement vector, ρ = m/V0 is average mass density of the crystal (V0 is the unit cell
volume), σik is symmetric stress tensor, vector f is average density of external forces acting on the
crystal. If the crystal deformation is purely elastic, then the stress is linearly proportional to the strain
(deformations) εik by the generalized Hooke’s law σik = λiklmεlm, where λiklm is tensor of the elastic
moduli and εik = (∇iuk+∇kui)/2 is linear strain tensor. A complex stress state of the crystal is described
by the average hydrostatic pressure [4]:

p0 = −1
3σkk (3)

The free elastic field (f = 0) is described by the dynamic equation

ρ
∂2ui
∂t2

− λiklm∇k∇lum = 0. (4)

Solid 4He needs static pressure p ≥ 25bar) or f = const, so equation (4) needs renormalization.
In the isotropic approximation the elastic moduli tensor λiklm is reduced to two independent modules

[20]:
λiklm = λδikδlm +G(δilδkm + δimδkl). (5)

where G and λ are shear modulus and Lame coefficient of the elastic medium. Isotropic elastic field has
two characteristic wave velocities: longitudinal cl and transverse ct ones [4,20]:

c2
l = 3K + 4G

3ρ ; c2
t = G

ρ
. (6)

Here K = λ + 2
3G is hydrostatic compression modulus in an isotropic medium. We note that from

equations (3, 5) one can get a clear relationship between the average hydrostatic pressure p0 and the
relative compression of an isotropic medium or a cubic crystal: σll = 3Kεll. Cubic and hexagonal crystals
are isotropic if their anisotropy parameters are [21,22]

Acub = 2c44

c11 − c12
, Ahex =

√
c11c33 − c13

2c55
, (7)
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are close to 1. Here cik are components of the elastic moduli tensor λiklm in Voigt notation accounting
for the crystal symmetry [20], and c55 = c44. Substituting the values c11/ρ = 3.66 · 109(cm/s)2; c13/ρ =
0.954 ·109(cm/s)2; c33/ρ = 4.72 ·109(cm/s)2; c44/ρ = 0.944 ·109(cm/s)2 from [1] we obtain Ahex = Ahcp =
1.696, for molar volume 19.8cm3/mole. When molar volume is 20.97cm3/mole, which is closer to the
experiment [11], we have c11/ρ = 2.12 · 109(cm/s)2; c13/ρ = 0.549 · 109(cm/s)2; c33/ρ = 2.90 · 109(cm/s)2;
c44/ρ = 0.652 · 109(cm/s)2 according to [1] and Ahex = Ahcp = 1.481. For comparison, we have
Acub = Abcc = 23.6 in solid bcc 3He at a molar volume of 21.64 cm3/mole [1]. Consequently, the
phase hcp 4He is close to isotropic.

In an isotropic medium, using (5, 6), the Lagrangian and dynamic equation (4) can be simplified:

L =
∫ (1

2ρ
(
∂u
∂t

)2
− 1

2ρc
2
l

(
∂ui
∂xi

)2
)
dV. (8)

ρ
∂2u
∂t2
− ρc2

l∆u = 0, (9)

where ∆ is Laplace operator. This equation describes the propagation of waves with an acoustic dispersion
law:

ω = clk. (10)

The longitudinal velocity of sound cl = 400÷ 600m/s [1] depends on the pressure and the 4He crystal
orientation. In the case of quantization of the acoustic field the phonons energy has the form

ε = h̄ω, (11)

where h̄ is Planck’s constant.

2.2 The Impuriton Spectrum and Hamiltonian

In quantum crystal, due to quantum tunneling, a defect is delocalized i.e. a quasiparticle defecton exists
[2,4]. The defecton energy εD(k) can be obtained, if the energy of the defect-free crystal is subtracted
of the energy of the defected crystal. The probability of quantum tunneling of the defecton is relatively
small, so we can use the strong coupling approximation known in the electronic theory [5,23,24]. For a
simple cubic lattice we have the dispersion law of the defecton is

εD(k) = ε0 + ε1(cos ka1 + cos ka2 + cos ka3), (12)

where ε0, ε1 are constants (|ε1| is proportional to the probability of quantum tunneling) aα are lattice
translational vectors. Defectons are light quasiparticles, as compared with the matrix atoms, so the
dispersion law has maximum at k =0 and ε1>0 in (12). The half-width of the defecton energy band is
∆ε = 3|ε1|. According to experiments in solid 4He, energy bandwidth is ∆ε ∼ 1K ∼ 10−23J for "vacancion"
and ∆ε ∼ (10−5 ÷ 10−4)K ∼ (10−28 ÷ 10−27)J for 3He "Impuriton". The formation energies for vacancion
(ε0 ' 5K) and impuriton (ε0 ' 0.2K) also differ considerably. In the isotropic approximation the expansion
(12) around the maximum value ε(k) (the band top) has the form

εD = ε0 +∆ε+ h̄2k2

2m∗ , m∗ = − h̄2

a2ε1
, (13)

where m∗ < 0 is defecton’s effective mass. This dispersion law has a maximum at k = 0 so the defecton
moves more like a hole not an electron [5,23,24]. According to (13) the defecton effective mass estimation
is following: m∗ = −6, 58 · 10−23kg<0. Electrons with the dispersion law (12) can be described by the
equivalent Hamiltonian [23] (chapter 6), [24], which is obtained in the Wannier representation by method
of slowly changing potentials. In this method, an analytical continuous function ε(k) of the quasi-wave
vector k is replaced by the same function ε(−i∇) of operator (−i∇). Then Schrodinger equation

Ĥψ(r, t) = ih̄
∂

∂t
ψ(r, t); Ĥ = K̂ + Û . (14)
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is replaced with an equation based on the equivalent Hamiltonian:

εn(−i∇)fn(r, t) + U(r)fn(r, t) = ih̄
∂

∂t
fn(r, t). (15)

Here r are coordinates of lattice sites, fn(r, t) play role of the wave functions in the local potential field
U(r), which is weak and slowly varying in space, n is the band number. The equivalent hamiltonian
method considers a quasiparticle to be free with altered kinetic energy operator K̂ = εn(−i∇) instead of
the original particle placed in an ideal lattice [23,24]. The defecton’s dispersion law (12) is obtained by
setting U(r) = 0 in the Schrodinger equation (15) and applying the Fourier transform.

Dispersion laws for phonon (10) and impuriton (12) can be written in the same form. Then, in the 1D
case, the dispersion law (12) can be written for frequencies as:

ω(k) = ω0 + ω1 cos ka; ω0 = ε0

h̄
; ω1 = ε1

h̄
. (16)

Group velocity of an impuriton is:

vg(k) = |∂ω(k)
∂k
| = |ε1 a

h̄
sin ka| ' ε1 a

h̄
. (17)

Usually, for its evaluation rather large value k ' 1/a is taken. So, taking a ' 0.38 nm and ε1 ∼ 10−28J
we obtain the estimation vg(k) ∼ 10−4m/s [2,4].

2.3 Impuriton-Lattice Interaction.

The quantum helium crystals are characterized by high zero-point oscillations. If a quantum atomic
oscillator has parameters k (stiffness of a potential) and m (atomic mass), its ground state energy is
h̄ω/2 = kx2

0/2. An amplitude of the zero-point oscillations can be estimated as x0 ' h̄1/2(km)−1/4. Two
helium isotopes having masses m3 = 3, m4 = 4 are in amu. Then at the same k that defines lattice state,
the oscillation amplitude ratio equals x03/x04 = (m4/m3)1/4 ' 1, 075, and ratio of the atomic volumes
will be 1 V03/V04 = (m4/m3)3/4 ' 1, 24. This means that the impurity 3He is the dilatation center in 4He
matrix due to the zero-point oscillations.

A dilatation center has an extra volume Ω0. The dilatation volume Ω0 is the main characteristic of a
dilatation center in the crystal [4,20]. The dilatation center is an interstitial atom with Ω0 = V0 [4]. For
impurity 3He, the dilatation volume is Ω03 ' V04(V03/V04 − 1) ' 0, 24V04.

Interaction Uint of the dilatation center 3He with an acoustic wave can be written as p∆V , or better

Uint = +∆p∆V. (18)

Here ∆V = Ω03 is the atomic volume change of the impuriton when driving in areas with low pressure,
∆p = p− p0 is the change in pressure as the sound wave passes relative to the equilibrium value p0. In
the case of a fixed impurity position an interaction would be considerably less. Combining the definition
of pressure (3), the stress tensor, modules and generalized Hookes law, we obtain:

∆p = −1
3(λ+ 2G)∂ui

∂xi
. (19)

Finally, the interaction of the longitudinal wave and impuriton is written in the form:

Uint(r, t) = −1
3Ω03ρc

2
l

∂ui
∂xi

. (20)

It is interesting to compare the structure of the resulting interaction of the impuriton-wave (20) with
the appropriate terms in [16,17,18] for vacancies and for electrons in the interaction between the electron
and acoustic wave in [25]. In [16,17,18] interaction between vacancions describes the local variation of the
1 We neglect their own volume of the helium atom (RatHe ' RatH /2 ' 0.025nm� x04 ' a/2 ' 0.2nm).
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kinetic energy of the lattice vibrations due to the presence of vacancies. This kind of interaction is to be
written for the fixed defects.

In [25] hamiltonian contains terms (Fourier components) of the interaction between electronic and
acoustic waves, its physical meaning is kinetic energy, multiplied by the small strain tensor. In this
case, the impuriton-phonon interaction Uint is in a form (with modules of elasticity) whose physical
meaning is the potential elastic energy multiplied by the small strain tensor. Therefore, for the interaction
terms in (20) and [25] physical meaning is very similar, despite the differences of objects and methods of
preparation: they describe the interaction of sound waves and quantum particles.

To account the interaction with impuritons, Lagrangian (8) for longitudinal wave would be sup-
plemented: L = K − (U +

∫
nUintdV ). Here n ≡ n(r, t) = (1/V )

∑
i |fi(r, t)|2 is the average local

concentration of the impuritons, i is the number of particles in a small volume V in the classic approach.
For a single particle we have n(r, t)→ |f(r, t)|2, density of probability for an impuriton in the quantum
approach. Then the local density of the impuriton-phonon interaction is

Lint = −1
3Ω03ρc

2
l

∫
|f(r, t)|2(∇u)dV. (21)

Then we need to add term ∂Lint/∂ui = +
∫
∂(nUint)/∂uidV into the wave equation (9). To account the

impuriton-wave interaction it is necessary to substitute Uint in the equivalent Schrodinger equation. Then
we get a system of equations that describes the interacting impuriton and lattice in solid 4He in 3D case:

ρ
∂2u
∂t2
− ρc2

l∆u− 1
3Ω03ρc

2
l∇(|f(r, t)|2) = 0; (22)

εn(−i∇)f(r, t)− 1
3Ω03ρc

2
l (∇u)f(r, t) = ih̄

∂

∂t
f(r, t). (23)

Then, in the case of 1D wave and one impuriton, the system of equations takes the form:

ρ
∂2u

∂t2
− ρc2

l

∂2u

∂x2 −
1
3Ω03ρc

2
l

∂

∂x
|f(r, t)|2 = 0; (24)

ε(−i ∂
∂x

)f(r, t)− 1
3Ω03ρc

2
l (
∂u

∂x
)f(r, t) = ih̄

∂

∂t
f(r, t). (25)

The wave function satisfies to the normalization condition∫
|f(r)|2dr = 1. (26)

3 Quasiparticles: the Impuriton-Phonon Soliton

3.1 Interaction and Dispersion Relations of Phonon and Impuriton

It should be noted that the phenomenon of the interaction of waves of different physical nature is well
known in the fundamental science and is used in technique. In plasma an acoustic and ion-plasma waves
interact [26]. In magnets the magnon and phonon quasiparticles interaction gives rise to magnetoacoustic
waves and to magnetoacoustic technique [27]. A similar approach is applied to interaction of an electron
beam with plasma [26] or with acoustic waves [28,25], the last gives rise to acoustoelectronics. The
waves interact most strongly at the intersection points of their dispersion laws, where hybrid waves are
generated.

Let us find solution for phonon u(r, t) and the impuriton wave function f(r, t) as plane traveling wave
along the axis 0x (we omit the arguments for shortening):

f(r, t)→ fx(x, t)→ f ; f = f⊥f(x, t) = f⊥f0 exp i(kx− ωt).

ρu = ∂u(r, t)
∂x

;
ρu(r, t)→ ρu(x, t)→ ρu; ρu = ρu(x, t) = ρu0 exp i(kx− ωt).

(27)

Theoretical Physics, Vol. 2, No. 4, December 2017 149

Copyright © 2017 Isaac Scientific Publishing TP



Presence of the same exponents means that we find solutions close to the intersection point of the
dispersion laws. Then after substitution f(r, t) in equations (24, 25) we obtain the system:

∂2ρu
∂t2

− c2
l

∂2ρu
∂x2 −

1
3Ω03c

2
l |f⊥|2

∂2

∂x2 |fx|
2 = 0;

ε(−i ∂
∂x

)fx −
1
3Ω03ρc

2
l ρufx = ih̄

∂

∂t
fx.

(28)

All terms that describe interaction are nonlinear in our case. So in linear approximation let us
substitute exponents (27) into equations system (28) which splits into two independent dispersion lows:{

ω = clk;
h̄ω = ε(k). (29)

Thus, in the linear case the interaction of phonons and impuritons impossible. Interaction of waves is
possible only due to high power terms which cause the amplitudes depend on coordinates (wave packet).
Let us consider the consequences of necessity of the envelope waves for the amplitudes.

3.2 Equation for Envelope Waves

We find a solution to the impuriton wave function as a wave packet (envelope wave) as in (27) and divide
dependencies into two groups in longitudinal and transverse directions. After substituting in equations
(24, 25) f(r, t) the system of equations is transformed to the form:

∂2ρu
∂t2

− c2
l

∂2ρu
∂x2 −

1
3Ω03c

2
l |f⊥|2

∂2

∂x2 |fx|
2 = 0;

(ε0 +∆ε)fx −
h̄2

2m∗
∂2

∂x2 fx −
fx
f⊥

h̄2

2m∗∆⊥f⊥ −
1
3Ω03ρc

2
l ρufx = ih̄

∂

∂t
fx.

(30)

This system of equations is very similar to the equations describing electron in an elastic molecular chain
[29]. We have the following differences between equations for these physical systems: 1) the sign of the
effective mass (is negative here), 2) terms ε0 +∆ε correspond to the level of the energy band top here; 3)
the coefficients of the interaction terms are different. These differences reflect the specificities of different
physical systems.

The next step is possible for stationary envelope waves with velocity V :

ξ = (x− x0 − V t); u(ξ); f0(ξ); ∂

∂x
= d

dξ
; ∂

∂t
= −V d

dξ
. (31)

The imaginary part of the second equation equal zero (k = m∗V /h̄), and we introduce the variables

s2 = V 2

c2
l

; E = W − (Em + m∗V 2

2 );

W = h̄ω; Em = ε0 +∆ε+ ε⊥;
(32)

Here Em is the band top level for the impuriton accounting transverse energy, W is the impuriton total
energy, E is the impuriton total energy excluding kinetic energy and measured from the band top. Then
the system (30) can be simplified:

(1− s2)d
2ρu
dξ2 + 1

3Ω03|f⊥|2
d2

dξ2 |f0|2 = 0;

− h̄2

2m∗
d2

dξ2 f0 −
1
3Ω03ρc

2
l ρuf0 = +Ef0.

(33)

Now, the first equation can be partially integrated:

ρu = du

dξ
= −1

3
Ω03|f⊥|2

1− s2 |f0(ξ)|2 + C1ξ + C2; (34)
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Usually the integration constants C1, C2 assumed to be zero, because ρu = 0 and dρu/dξ = 0 if
|f0(±∞)|2 = 0 [29], [30]. After replacing ρu in equation (33b) we obtain nonlinear Schrodinger equation
for the impuriton-phonon envelope waves:

d2

dξ2 f0 + εf0 − 2g1f0|f0|2 = 0. (35)

where we have introduced variables

ε = E
2m∗

h̄2 ; g1 = 1
9ρc

2
l

Ω2
03|f⊥|2

1− s2
m∗

h̄2 ; (36)

It is important to further that g1 < 0 because m∗ < 0, and ε can be both positive and negative.

3.3 Envelope Solitary Wave: the Impuriton-Phonon

Integration of the nonlinear Schrodinger equation (35) yields the following soliton solution for the wave
function

f0(ξ) = A

cosh(ξ/lξ)
. (37)

and displacements, according to (34)

ρu(ξ) = du

dξ
= −1

3
Ω03|f⊥|2

1− s2 |f0(ξ)|2; (38)

Figure 1. The dependence of the wave function |f0(ξ)| of the mpuriton-phonon soliton on coordinates (37). Atoms
along the x-axis are shown with lattice constant periodicity. The characteristic soliton length lξ is from line 5 in
Table 1.

The soliton parameters, the characteristic length and amplitude are

lξ = 1√
−ε

; A =
√
ε/g1; (39)

The shape of the wave function (37) is shown in Fig. 1 in comparison with the lattice constant and based
on lξ estimation obtained in Table 1 below.

Normalization (26) gives the soliton energy E depending on velocity s:

E = E0

(1− s2)2 ;

Ethi = E0 = − m∗ρ2c4
lΩ

4
03

8 · 81π2R4h̄2 ;
(40)
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Here Ethi = E0 > 0 is impuriton contribution to the soliton gap (threshold) at s = 0. Instead of choosing
the test wave function f⊥(r⊥), as it was done in [30], we introduced R, the characteristic radius of
transvers cross section of the soliton, and step wave function:

f⊥(r⊥) =
{

1; |r⊥| ≤ R;
0; |r⊥| > R.

(41)

From relations (32) we can find the impuriton-phonon energy dependence on velocity

W − Em = E0[−bs2 + 1
(1− s2)2 ]; (42)

where parameter of the dimensionless impuriton energy is introduced:

b = −m
∗c2
l

2E0
> 0. (43)

Parameter b is the impuriton kinetic energy at sound velocity normalized to the soliton gap width.

3.4 Soliton Elastic Energy

The impuriton-phonon soliton energy, obtained above, considers impuriton energy and its interaction with
lattice. In addition, there is the contribution of an accompanying lattice deformation with Lagrangian
L = K − U (8). Here K,U are the kinetic and potential energies of the lattice. Hamiltonian H = K + U
determines the elastic energy of the lattice El. Its dependence on ξ (31) gives the factor 1+s2. The explicit
form of the function du/dξ (38) and the wave function (37), separation of longitudinal and transverse
variables simplifies the integral:

EL = 1
2ρc

2
l (1 + s2)πR

2

9

(
Ω2

03A
4

(1− s2)2

)
lξ

∫ +∞

−∞

dy

cosh4 y
. (44)

The explicit form of the soliton parameters (39) and simplification give

EL = 2
3E0

1 + s2

(1− s2)3 . (45)

where E0 and s2 are defined by the relations (40) and (32), respectively.
Thus, to obtain the total energy of the impuriton-phonon soliton it is necessary to summarize the

impuriton and elastic parts of the soliton energy:

Ei−p(s) = W − Em + EL;

Ei−p(s) = E0

(
1

(1− s2)2 + 2
3

1 + s2

(1− s2)3 − bs
2
)

; (46)

At s = 0 considering the elastic energy the gap for formation of the impuriton-phonon soliton is

Eth = Ei−p(0) = 5
3E0; (47)

With elastic energy accounting, the gap becomes larger, however, the result does not change qualitatively.
The total energy dependence of the impuriton-phonon soliton on velocity (46) is shown in Fig. 2.

4 The Chemical Potential as a Driving Force

In the phase equilibrium their chemical potentials µi(T, P ) are equal [31]. If we change the thermodynamic
parameters (temperature, pressure) equilibrium condition breaks: the difference of the chemical potentials
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Figure 2. Energy of the impuriton-phonon soliton depending on the velocity (0≤ s ≤1) according to relation (46).
When the parameter values are b=0; 10; 71.2; 99.8, the curves are arranged sequentially downwards. The last two
values of b are obtained from the comparison with experiment, see Table 1. On the left a wide range of energies is
depicted. On the right the enlarged fragment 0 ≤ E ≤ 2Eth is shown (on left it is narrow central strip labeled by
arc and arrow).

arises between the phases. Then the system reduces its energy by particle transition between phases and
µi(T, P ) approach to a new equilibrium.

At fast heating (cooling) during one helium atom transition between the phases, change of the system
energy can be written as [9,32] ∆E3,4 = ∆µ3,4(∆T ). Here the index 3 corresponds to an 3He atom
transition from 3He nuclears within the 4He matrix; the index 4 corresponds to opposite motion of an
4He atom. Relation between the chemical potential, temperature and concentration in the 3He−4He solid
solutions was defined [33]. These relations are used in [9,32] for analysis of fast heating from an initial
Ti to a final Tf = Ti + ∆T temperature. With the temperature jump the phonon subsystem quickly
approaches a new equilibrium, and a new atomic (impurity) equilibrium concentration is reached for a
much greater time. In a nonequilibrium state at fast heating due to inconsistencies of 3He concentrations,
the difference in chemical potential between the states in the nuclei and the matrix appears. The 3He
atoms concentration is X = NHe3/(NHe4 +NHe3).

According to estimates based on pressure measurement experiments for solid solutions, 3He impurity
concentration in 4He matrix at temperature 100mK is Xmatr

i ' (1÷28)10−5, i.e. lnXmatr
i = −(8.2÷11.5)

[32]. Summing the above estimates, at the temperature jump ∆T the change in the chemical potential
between the phases was written as

∆µ3 ' kB∆T lnXmatr
i ' −kB∆T (8.2÷ 11.5). (48)

Thus, they conclude that at a fixed 3He concentration after a temperature jump, the chemical potential
change occurs strikingly different in different phases [9,32]. The main contribution to this change results
from the matrix phase, depleted by 3He isotope. The linear relationship ∆µ3(∆T ) (48) is shown in Fig. 3.
The jump overheating results a relative decreasing of the 3He chemical potential in the matrix.

5 Threshold Impuriton-Phonons Generation. Rapid Dissolution
Mechanisms

A detailed analysis of the possible transfer mechanisms of 3He atoms in different experimental situations
was carried out in [32]. Here we consider the 3He atom transfer using microscopic model suggested above
for impuriton-phonon quasiparticle.

When 3He atoms move in the matrix, the particle flux density is as follows:

Jm ∼ m3n3v; (49)
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Figure 3. The difference between the levels of the chemical potential ∆µ3 in the matrix and in the nucleus
depending on the overheating ∆T according to relation (48) is shown for the impurity 3He atoms. Dotted line is
overheating threshold ∆Tc.

where m3, n3 are transferred impurity atom mass and their concentration, v is the average velocity in the
flow. The concentration and velocity values change in the space. The initial concentration is determined
by complex processes on the nuclear boundary [32]. The relaxation time of the concentration and the
pressure is inversely proportional to the flux density:

τP ∼ τc ∼
1
Jm
∼ 1
v

; (50)

For small overheating, a bottleneck for the atomic flux value exists, namely, the band movement velocity
v = vg of the impurity within the matrix (17). When overheating exceeds a threshold value, the average
impurity atomic flux increases by orders of magnitude [9,10,11,32].

We attribute this increase in the particle flux to formation the impuriton-phonon quasiparticles
(solitons) introduced above. As have been shown, the impuriton-phonon quasiparticle would move at a
velocity comparable to the sound speed. The physical meaning of the chemical potential is the energy
change of a phase by adding (removing) a particle. Therefore, under overheating the chemical potential
change is compatible with following impuriton-phonon energy (see. (46)).

µ3 = W + El;
∆µ3 = Ei−p(s) = µ3 − Em.

(51)

At rapid dissolution the threshold formation energy of the impuriton-phonon and the chemical potential
change are comparable as follows:

∆µ3th = Eth. (52)

This comparison allows to determine the physical nature of the experimental processes. In case of the
overheating, the chemical potential step arises between the nuclei and the matrix ∆µ3 < 0. Then two
mechanisms are possible.

1) The mechanism I: impuriton and phonon emission and separate motion.
If Eth > |∆µ3(∆Tf )| i.e. the chemical potential step is lower than the formation energy of the

impuriton-fononon quasiparticle, then the impurity atom transition and the impuriton formation must be
accompanied by the phonon emission (see Fig. 4a.):

|∆µ3| = h̄ωph(k) . (53)

Here ωph(k) is the emitted photon frequency (10). Low band velocity of the impuriton movement is the
main limiting process of the nuclei dissolution rate. Impuriton just does not have time to leave the nuclei
boundary. The nuclei spreading occurs with the impuriton band velocity.
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Figure 4. The energy levels during an impuriton (circle) transition from the 3He nucleous in the 4He matrix
at different overheating ∆T . The nucleous level (points) of the chemical potential µ3 is approximately constant.
Heavy vertical arrow from the circle indicates the magnitude and direction of change in the chemical potential
in the matrix. Difference ∆µ3 should be compared with a threshold energy Eth, the gap in spectrum of the
impuriton-phonon soliton. The heavy horizontal arrow indicates the energy level (51) to which the impuriton falls
in the matrix. a) Mechanism 1 at low overheating: 0 ≤ ∆µ3 < Eth, the emission of a phonon hνph and further
band motion of an impuriton. b) Mechanism 2 for high overheating: Eth ≤ ∆µ3, emission of the impuriton-phonon
quasiparticle-soliton. See a detailed discussion in the text. In comparison with Fig. 2 Eth → Em + Eth.

2) The mechanism II: the impuriton-phonon quasiparticle emission
At high overheating, the chemical potential step between the nuclei and the matrix begins to exceed (see
Fig. 4b.) the threshold energy of the impuriton-phonon soliton formation in the matrix: |∆µ3(∆Tf )| ≥ Eth.
Inside the matrix after the impurity transition, the impuriton-phonon quasiparticle is formed by combining
the properties of impuriton and phonon.

|∆µ3(∆Tf )| = Ei−p(s) ≥ Eth;
|∆µ3th| = Eth.

(54)

Here at the critical overheating ∆Tc, jump threshold value of the chemical potential and the soliton
energy gap in (47) are equated. Then relation (54) and evaluation ∆µ3=25mÊ in (48) make it possible to
evaluate the magnitude of the impuriton-phonon soliton gap:

Eth = kB∆Tc lnXmatr
i ' (0, 205÷ 0, 288)K = (0, 283÷ 0, 397) · 10−23J. (55)

These estimates are used in Table 1 to evaluate other parameters of the impuriton-phonon soliton.
The impuriton-phonon quasiparticle velocity is comparable to the sound speed s ∼ 1 (40). This could

explain the anomalously high rate of the 3He phase nuclei dissolution at overheating above the threshold
in the experiment [9]. The impuriton-phonon quasiparticle energy coincides with the chemical potential
step at the phase boundary (see Fig. 2,Fig. 3). At low overheating in the first mechanism, the velocity
is 5-6 orders of magnitude smaller, so the graph does not differ from zero. The obtained dependence of
the velocity of the impuriton and the impuriton-phonon on the overheating value qualitatively agrees
with the experimental results in the dissolution rate of the 3He nuclei. At least a threshold value of high
velocity and its dependence on the overheating value appear in the proposed model.

Simultaneous the impuriton formation with the phonon emission, considered in the mechanism 1, is
not excluded. Such impuritons formation would lead to a rising smoothing nucleus-matrix boundaries
and termination of the impuriton-phonon generation in the long run.

6 Photoelectric Effect Analogy

Let us discuss photoelectric effect analogy with the generation of the phonons and the impuriton-phonon
quasiparticles. Einsteins photoelectric equation [5]:

hν = φ+ mV 2

2 , (56)
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involves the energy of an incident photon hν, work function φ, and kinetic energy mV 2/2 of the emitted
photoelectron. h is Planck’s constant.

Equation for the impuriton-phonon soliton (46) has similar structure:

Ei−p(s) = W − Em + El = E + El + m∗V 2

2 ; (57)

For more similarity with the Einsteins equation we can write this relation in the following form

|∆µ3(∆Tf )| = Eth + Esm + m∗V 2

2 ;
Esm = (E + El − Eth);

(58)

where the explicit dependence of the energy (E + El) +mV 2/2 on velocity is given by (46). The terms
have the following meanings. W −Em ≡ |∆µ3(∆Tf )| is the impuriton total energy measured from the
band top. Eth is gap in the impuriton-phonon soliton spectrum. Esm is the smooth part of the soliton
spectrum above the gap. mV 2/2 is kinetic energy of an impuriton emitted from the impuriton band.

Both equations express the energy conservation law in the interaction of particles (quasiparticles) with
matter. All terms in the equations (56), (58) can be mapped with each other:

h̄ω ↔ |∆µ3| ;
φ ↔ Eth ;
mV 2

2 ↔ Esm + mV 2

2 .

(59)

The physical meaning of the terms in these equations is very close.
The left side in (56,58) and the first line in (59) contain the initial high-energy particle (step height

from which the particle falls). In eq. (58) it is an 3He atom heated in a nucleous. In eq. (56) it is photon
incident on a metal.

The first term on the right side of the equations (58, 56) and the second line in (59) contain work
that must be expanded on particle ejection. In equation (58) it is Eth, the impuriton-phonon spectrum
threshold. In equation (56) it is electron work function.

The second term on the right side in the equations (58, 56) and in the third line in (59) contain kinetic
energy of the emitted particle. In equation (58), it is the impuriton-phonon soliton energy above the gap
plus the kinetic energy of the emitted impuriton. In equation (56), it is the kinetic energy of the emitted
electrons.

In the right-hand side of equation (56), the only particle, electron, start move over the potential step
(the work function). After critical overheating, the only particle is emitted: the impuriton-phonon above
the soliton energy gap.

The photoelectric threshold energy can be obtained from the Einsteins photoelectric equation
if the electron velocity V is zero. Velocity of the emitted impuriton-phonon plays the same role. The
impuriton-phonon emission threshold can be found by substituting zero velocity. Then, in the
photoelectric effect and in the impuriton-phonon emission the threshold energy can be written in the
same form:

h̄ωth = φ;
|∆µ3th| = Eth.

(60)

where the energy threshold Eth of the soliton formation is given by relations (47) and (55).

7 Results and Comparison with Experiment

7.1 Estimation of the Parameters

Discussion of the results we start by estimation of the parameters of the impuriton-phonon soliton, namely,
the effective mass m∗, the effective length lξ, the effective radius R, the normalizing factor b of the
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impuriton-phonon kinetic energy from the relations (13), (39), (40), (47), respectively. To estimate these
parameters we use the experimental values from [34]. For hcp 4He the numerical value of the molar volume
is Vm=20.97·10−6m3/mol. Atomic mass is ma ' 6, 68 ·10−27kg. Atomic volume V04 can be estimated from
the molar volume Vm for helium V04 = Vm/NA ' 3, 48 · 10−29m3. For the impurity 3He atom the effective
mass is m∗ = −m04/4 = −1.67 · 10−27kg according to (13) and Ω03 ' 0.24V04 = 8, 36 · 10−30m3. Density
is ρ = µ/Vm = 191kg/m3 where µ is 4He molar mass. The longitudinal sound velocity is cl ' 450m/s.

All estimates of the parameters of the impuriton-phonon soliton are given in Table 1. The first and
second (third) columns of the Table 1 are the effective mass and the width of the impuriton band related by
(13). In line 1 the effective mass and the impuriton band width are shown. In lines 2 and 4, it was assumed
that the impuriton band expands to the value of the soliton gap ∆ε = Eth when the impuriton-phonon is
formed. In Table 1 before lines 1 and 4 Eth values are obtained from the analysis of the chemical potential
behavior in the experiment (55). In lines 3 and 5 the effective mass is assumed to be negative (minus one
amu, the difference between the atomic masses of 3He and 4He isotopes), it is mass of the free particle
(hole). The effective mass reduces if the band expands on.

Table 1. The calculated parameters of the impuriton-phonon soliton for the overheating ∆T=25mK. Estimates
are carried out for the effective mass m∗, the effective length lξ, effective radius R and the normalization factor b
of the impuriton kinetic energy. For the discussion see text.

−m, kg ∆ε, K ∆ε, J lξ
1− s2 , Å R, Å b

N 1 2 3 4 5 6

Eth =0,21 K

1 6, 58 · 10−23 10−4 1, 38 · 10−27 4, 62 · 10−2 11,42 1, 68ă · 106

2 3, 21 · 10−26 0,21 2, 83 · 10−24 a/
√

2 1,85 1ă149
3 1, 67 · 10−27 – – 13,9 1,00 99,8

Eth =0,29K

4 2, 29 · 10−26 0,29 3, 97 · 10−24 a/
√

2 1,56 584
5 1, 67 · 10−27 – – 11,8 0,92 71,2

The effective length lξ of the impuriton-phonon soliton (39) is calculated according to effective mass
and energy of a soliton E (36). It is 4th column of the Table 1. The largest effective length of the soliton
lξ ' 10Å is obtained in lines 3 and 5 of the Table 1 for free particles. This solution is in agreement with
the chosen research approach of monochromatic oscillations modulated by slowly varying amplitudes. For
the rest masses (lines 1, 2 and 4) the effective length of the soliton is less than lattice period a, which
does not meet the model under investigation. Thus, in the case of the band movements (line 1) the soliton
length is several orders smaller than the lattice period. Now, therefore, the soliton characteristic size is
' 2lξ ' 24− 28Å plus the exponential tails. The characteristic length reduces with factor (1− s2) when
velocity is increasing. The shape of the wave function (37) in comparison with the lattice constant is
shown in Fig. 1.

The effective radius R of the impuriton-phonon soliton (the fifth column of the Table 1) is calculated
according to value of the gap soliton formation E0 (40) and the effective mass (the same line). For free
particle (lines 3, 5) we have R ' 1Å (plus the exponential tails) i.e. the soliton transverse dimension is
order of atomic size.

Parameter b (sixth column of the Table 1) is calculated according to the radius R value. We can see from
this relationship that the parameter b decreases with increasing effective mass and the impuriton-phonon
soliton radius. For the obtained parameter b values (in Table 1) the total energy of the impuriton-phonon
soliton dependence on velocity (46) is shown in Fig. 2.
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7.2 Experiment and Velocity of the Impuriton-Phonon Soliton
The parameter b allows to find the impuriton-phonon soliton velocity shown in Fig. 2. To find corresponding
to experiment, we transform Fig. 2, arrange it close to the experimental data plot and make equal scale
of horizontal axis, see Fig. 5.

Figure 5. Comparison of the experimental (top panel) and the theoretical (bottom panel) results. Top (upper
panel) shows the dependence of the relative pressure jump (dissolution rate) on the overheating value ∆T in
the 3He-4He system. Bottom (lower panel) shows dependence of velocity on the energy of the impuriton-phonon
quasiparticle according to (46).

Top (upper panel) in Fig. 5 shows the experimentally measured value of the pressure jump (∆P )
should linear depend on the overheating value.

Bottom (lower panel). In view of the proportionality of E ∼ ∆µ3 ∼ ∆T the values (T = 0)-
(E = 0→ Em) and Tc-Eth → Em + Eth are combined. In comparison with Fig. 2, the axes are rotated
90o, the subthreshold part is removed, the area above the threshold (to the right of the vertical lines) is
extended to cover the experimental ∆T range. The horizontal line s = 1 is velocity of sound. Below, two
almost parallel horizontal curves s(E) are built based on the experimental data with b=71.2; 99.8 from
Table 1.

At these curves the velocity magnitude is s = V/cl ' 0, 8. At lower value of the parameter b a curved
shape of the experimental curve can be approximated. However, the decrease in pressure jump near the
threshold can be associated with a hysteresis (unstable) regime change for particle emission mechanism
1→2 with ∆T increasing.

The average values of the experimental dependence ∆p(∆T ) over the threshold we approximate these
curves while magnitude of the velocity is s = V/cl ' 0, 8. At lower value of the parameter b a curved
shape of the experimental curve can be approximated in the top panel. However, the decrease in pressure
jump near the threshold can be associated with a delay when the hysteresis (unstable) regime change
particle emission mechanism 1→2 with an increase in ∆T .

Result of these estimations of the impuriton-phonon soliton parameters leads to the following con-
clusions. Self-consistency of the approach and calculated parameters is possible only in the case of free
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or wide-band motion of the impuriton-phonon. In this case, the resulting characteristic length of the
soliton is 2lxi '22-28Å. In other cases (band motion impuriton) the soliton characteristic length is
comparable to the lattice period: lxi ' a (or even less), i.e. envelope waves are not formed. Thus, the
applicability of the proposed model is defined by a single parameter, a sufficiently large characteristic
length of the soliton. In the case of the large soliton lengths the transverse dimension R is comparable to
atomic size. If we accept a smooth change in the transverse dimensions (as in [30]), then the exponential
tails appear, but the situation has not fundamentally changed. This produced unusual geometry for the
impuriton-phonon solutions needs further discussion.

7.3 Comparison of the Possible Impuriton Physical Models

In SubSect. 7.1 we have obtained the expected result: the applicability of the model requires too large
the soliton characteristic size lxi. This in turn requires too light effective mass and wide band. It should
be noted that the impuriton zone cannot describe the rapid movement neither any impuriton nor an
impuriton-phonon. The resulting movement of the impurity atoms differs from the previously known slow
band motion (12) [2,4]. Here we’ll discuss this conflict. Band motion is related with atomic exchange
and tunneling between the nearest- neighbor. The best conditions for exchange interaction are created
by the atoms arranged at a minimum in distance, i.e., in the close-packed planes in the close-packed
directions. Obviously, at the atomic arrangement the impuriton movement with high velocity observed
experimentally is difficult.

The resulting quasiparticles, the impuriton-phonon solitons, have a spindle shape: they are strongly
elongated along the direction of motion, states extend tens of interatomic distances and have a small
cross-section. It is interesting to note that the obtained geometry of the solutions, the impuriton-phonons,
is similar to the one-dimensional crowdion [4]. Crowdion moves in the close-packed planes in the close-
packed directions. In this respect, crowdion is similar to the impuriton in band. But in crowdion an
individual atom is shifted only for the lattice period. However an impuriton-phonon and an impuriton in
band move an individual atom over long distances.

In addition, the geometry of the solutions, the impuriton-phonons, is similar to motion of a channeling
particle [35]. Apparently, the impuriton-phonons as well as the channeling particles more easily move in
less densely packed planes in less densely packed areas, between the crystal planes. A lattice distortion
in a loose channel for impuriton creates conditions for a simultaneous phonon channeling. Conditions
of phonons channeling are considered in [36,37]. It seems that analogy between the impuriton-phonon
quasiparticle and a channeling particle is the most adequate.

It should be noted that the theory was originally built around the idea 3He atom movement in
impuriton band. However, the parameters estimation demonstrated that impuriton-phonon soliton moves
out of a band in the sense of conventional 3He impuriton. The condition of applicability of the soliton
description (envelope wave) necessarily requires a relatively large soliton characteristic length. The latter
condition is satisfied only for small effective mass in comparison to the band movement. That is, avoiding
movement in the impuriton band is accompanied by movement in a wide band with a small impuriton
effective mass. A departure from an impuriton band motion results in the movement in the wide band with
a small impuriton effective mass. The indicated process can not occur without changes in an impuriton
motion and interaction in direct space. This fact is reflected in the discussed above relatively loose channel
for the impuriton-phonon motion.

It is possible, estimation of the volume energy density inside the impuriton-phonon soliton will promote
understanding in choosing the rapid dissolution model. During the transition into the matrix, impuriton
emisses energy ∆µ3 ' kB∆T lnXmatr

i (48) (as phonon or impuriton-phonon quantum) reached at critical
overheating ∆T ≥ ∆Tc=25mK. The soliton volume according to its parameters is V ' 2πR2lξ '
(74÷ 87) · 10−30m3. Then the minimum volume energy density inside the impuriton-phonon soliton is

wmin '
W

V
' (3÷ 5) · 10+4( J

m3 ).

As we can see in Fig. 5 the experimental overheating value can reach ' 4∆Tc, in the further experiments
' 8∆Tc. So volume energy density can be considerably higher. In the center of the soliton the energy
density can be several times more. At found energy densities, it is possible to change as the channeling

Theoretical Physics, Vol. 2, No. 4, December 2017 159

Copyright © 2017 Isaac Scientific Publishing TP



conditions as tunneling with impuriton band expansion (phonon assisted tunneling, deformation potential
etc.).

7.4 The Generation Mechanisms

Let us discuss how the proposed mechanisms for generation of the impuriton-phonon quasiparticle or
phonon and impuritons (see Sect. 5) can demonstrate themseves in the experiment. So, the mechanisms
described in the dissolution of the 3He nuclei with increasing overheating value ∆T are realized in the
following order: 1) the mechanism of emission impuritons and phonons separately, 2) the impuriton-phonon
emission.

The dissolution of nuclei may start with 2nd mechanism (generation of the impuriton-phonon quasi-
particles) if a sufficiently high initial overheating, which exceeds the threshold value |∆µ(∆T )| ≥ Eth,
will be created. With time the impurity 3He concentration increases in the matrix as far as the nucleus
dissolution continues. This increase in concentration causes a decrease in chemical potential difference
between the phases, and conditions are created for the consistent implementation of mechanisms 2→1.
In other words, when there is a large initial overheating the dissolution mechanism 2 with emission of
the impuriton-phonon quasiparticles having velocity comparable to the velocity of longitudinal sound
cl in the matrix take place. In the matrix the impurity concentration 3He leveled in the characteristic
time τ2 ' L/v2 ∼ L/cl, where L is the distance between the nuclei. After the impurity concentration
increasing the difference between the chemical potential in the nucleous and in the matrix is reduced
to a value |∆µ| ≤ Eth. Then the mechanism 1 of nucleus dissolution starts with the separate emission
of phonons and impuritons. The impuritons have a band velocity vg ∼ 10−4m/s (17), which results the
characteristic time τ1 ' L/vg. Thus, when a high initial overheating nuclei, the dissolution mechanisms
2→1 are implemented consistently with the following relation of the characteristic times τ1 � τ2.

Moreover, the total time te of the impuriton-phonon and impuritons emission depends on the
overheating magnitude. It can be assumed that the emission time is proportional to the overheating
magnitude. Then the mass M3 transferred with the rapid nucleus dissolution of the 3He phase can be
estimated as

M3 ∼ JSτ2 → m3
τ2∫
0
v(t)n(t)S(t)dt; (∆T > ∆Tc). (61)

where J and S can be considered at the surface of a nucleouse.
Both n, S decrease from an initial to the criticsal values n0 → nc = 0, S0 → Sc → 0 at which

the impuriton-phonon emission is terminated because of chemical potential step reaches the threshold
value. We can suppouse τ2 or some combination of τ2 and n to be linearly dependent on overheating
F (n, τ2) ∼ ∆T . It can improve understanding of correlation of experimental and theoretical results in
Fig. 5.

In our opinion the proposed nuclei dissolution scheme describes qualitatively the experimentally
observed situation [9,32]. The model describes the following experimental features. 1. For the rapid
nucleus dissolution mechanism (the impuriton-phonon quasiparticles emission) the threshold behavior is
explained and dependence of the dissolution rate on overheating is obtained qualitatively (more precisely,
the particle velocity dependence on the overheating is obviously obtained). 2. transformation of rapid
into slow dissolution after a certain alignment time (leveling time) which is not detect in the experiment.

From a comparison with experiment the initial impuriton-phonons velocity depending on overheating
above a threshold is to be determined. This parameter is directly related to the excitation threshold of
the impuriton-phonons and the critical overheating. Because of the complex geometry and a large number
of other factors, the impuritons velocity itself is not obtained in the experiment with rapid dissolution of
the 3He nuclei. So far only a qualitative comparison of the experimental data with the theoretical results
of this work is possible.

8 Conclusion

The following systems have been considered: the pure 4He matrix with phonons and the isotopic impurity
3He atoms (impuritons). The interaction of impuritons and phonons has been introduced and analyzed.
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This interaction has been written using dilatation volume and the sound wave pressure. The system of
equations that describes the interaction of phonons and the impuritons has been derived. The system
includes the wave equation for the phonons interacting with the impuritons and the Schrodinger equation
for the impuritons interacting with phonons. The analysis shows that the interaction of the waves occurs
only if an impuritons wave packet exists, ie, the problem is essentially nonlinear. For the envelope waves the
system has been reduced to a nonlinear Schrodinger equation which has a soliton solution, the impuriton-
phonon quasiparticle. The normalization condition for the impuriton wave function determines its energy
dependence on the velocity and the transverse dimension of the impuriton-phonon. Due to the negative
impuriton mass, velocity dependence on the impuriton-phonon energy is S-shaped that corresponds to the
threshold dependence of the 3He nucleous dissolution rate on overheating in the experiment. Analogy with
the photoelectric effect has been introduced. The threshold overheating temperature (chemical potential
jump) has been responded to threshold in the photoelectric effect. It is shown that the narrow impuriton
band cannot describe the rapid movement of the impuriton-phonon quasiparticle; alternative descriptions,
channeling and induced transformation of the band, are proposed. The velocity dependence on energy and
accounting of the soliton gap magnitude allow us to estimate the impuriton-phonon velocity v ' 0.8cl and
qualitatively reproduce the experimental dependence of the nucleous dissolution rate on the overheating.
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